540 likes | 785 Views
Mecânica I. DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial. Mecânica I. Capitulo 2 - Cinemática do ponto material. Mecânica I. DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial. Movimento uniforme.
E N D
Mecânica I DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Mecânica I Capitulo 2 - Cinemática do ponto material
Mecânica I DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Movimento uniforme No movimento uniforme a velocidade é constante em qualquer instante s = so + v.t s = posição em um instante qualquer (m, km) so = posição inicial (m, km) v = velocidade (m/s, km/h) t = tempo (s, h)
Mecânica I DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Exercício 1: a) Trace o diagrama horário da posição da moto b) Identifique o movimento da moto c) Obtenha a equação horária s-t d) A velocidade da moto e a posição da moto ao fim de 8 s
Mecânica I DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Encontro entre dois corpos em movimento uniforme Para determinar o instante em que dois corpos se encontram devemos igualar as funções das posições dos corpos. Substituindo o instante encontrado, numa das funções horárias, determinaremos a posição onde o encontro ocorreu. sA = sA0 + vA.tA sB = sB0 + vB.tB Na posição do encontro: sA = sB
Mecânica I DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Movimento uniforme Exercício 2: Dois corpos deslocam-se sobre a mesma trajectória, obedecendo às funções horárias: sA = 5+ 2.t e sB = 65 - 8.t Determine o instante e a posição do encontro.
Mecânica I DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Movimento uniformemente variado (M.U.V) Se no movimento de um corpo, em intervalos de tempo iguais ele sofrer a mesma variação da velocidade, dizemos que realiza um movimento uniformemente variado.
Mecânica I DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Movimento uniformemente variado (M.U.V) s = s0 + v0.t + 1/2 a.t2 s = posição num instante qualquer (m, km) s0 = posição no instante inicial (m, km) vo = velocidade no instante inicial (m/s, km/h) a = aceleração (m/s2, km/h2) t = tempo (s, h)
Mecânica I DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Movimento uniformemente variado (M.U.V) Posição em função do tempo: s = s0 + v0.t + 1/2 a.t2 Velocidade em função do tempo: v = v0 + a.t
Mecânica I DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Equação de Torricelli A equação de Torricelli relaciona a velocidade com o espaço percorrido pelo corpo. v2 = vo2 + 2.a. Δs Δs = distância percorrida no intervalo considerado (m, km) Δs = s - s0 v = velocidade no final do intervalo (m/s, km/h) vo = velocidade no início do intervalo (m/s, km/h) a = aceleração (m/s2, km/h2)
Mecânica I DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Exemplo de Aplicação da Equação de Torricelli Exercício 3: Um carro de corrida tem velocidade de 28 m/s. Em determinado instante, os travões são accionados produzindo um retardamento de -5 m/s2. Quantos metros o carro percorre até atingir a velocidade de 13 m/s ?
Mecânica I DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Exercício 4: Observe o gráfico x-t e procure associar os pontos 1, 2 e com as figuras A, B e C.
Mecânica I DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Exercício 5: A figura mostra dois tractores em movimento. a) Compare as velocidades dos tractores. b) Identifique o movimento dos tractores.
Mecânica I vo g = -10 m/s2 DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Queda livre : Denomina-se queda livre aos movimentos de subida ou de descida que os corpos realizam no vácuo. Estes movimentos são descritos pelas mesmas equações do movimento uniformemente variado. A aceleração do movimento é a aceleração da gravidade g. S [m] s = so + v0.t + 1/2 . g.t2 v = vo + g.t So v2 = vo2 + 2.g. Δs Referência gTerra = - 10 m/s2
Mecânica I DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Exercício 6: Uma menina, na margem de um rio, deixa cair uma pedra que demora 5 s para chegar à superfície da água. Sendo a aceleração local da gravidade igual a 10 m/s2, determine a distância percorrida pela pedra.
Mecânica I DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Exercício 7: A figura fornece a velocidade de uma pedra nos primeiros 2 segundos. Qual será a velocidade da pedra nos instantes 3 s, 4 s e 5 s ?
Mecânica I DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Daremos ênfase, neste módulo, ao estudo das propriedades geométricas dos diagramas horários, principalmente ao significado das áreas (entre o gráfico e o eixo dos tempos) nos diagramas horários da velocidade e da aceleração para um movimento. O deslocamento escalar (s) num certo intervalo de tempo (t), para um movimento qualquer, pode ser determinado através do cálculo da área existente entre o gráfico v-t e o eixo dos tempos, limitada pelo intervalo de tempo escolhido. Observe isso no diagrama mostrado.
Mecânica I DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial O diagrama horário da velocidade pode indicar que o movimento é composto por etapas, de tal forma que podemos, em cada trecho, identificar as suas características e também calcular os seus respectivos deslocamentos escalares.
Mecânica I DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial A áreacalculada no diagrama horário da aceleração, entre o gráfico e o eixo dos tempos, limitada por um t, indica a variação de velocidade ocorrida naquele intervalo. Observação: a área sob o gráfico espaço x tempo não tem significado físico prático. Logo, não há razão para efectuarmos seu cálculo.
Mecânica I DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial No movimento uniforme: o declive da recta inclinada do gráfico s x t indica o valor da velocidade escalar constante do corpo. Ou seja:
Mecânica I DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Num movimento variado o declive da recta tangente ao gráfico s x t, num certo instante t, representa numericamente a velocidade escalar do corpo naquele instante. Isto é:
Mecânica I DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial O cálculo do declive num gráfico v x t leva-nos a encontrar a aceleração escalar do movimento (aceleração que ocorre num determinado instante).
Mecânica I DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Cálculo de áreas: Gráfico v x t Gráfico a x t Declives: Gráfico s x t Gráfico v x t
Mecânica I DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Exercício 8 O gráfico a seguir indica como varia a velocidade escalar de uma composição de metro, em função do tempo, durante o seu deslocamento entre duas estações. Com base no gráfico: a) Calcule o deslocamento escalar da composição entre as duas estações. b) Construa o diagrama horário da aceleração escalar para esse movimento.
Resolução Mecânica I DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial • Resolução • A área do trapézio, sob o gráfico v x t dado, representa o • deslocamento escalar ocorrido, isto é:
Resolução • Nos primeiros 15 s: M.U.V. •Entre os instantes 15 s e 45 s : M.U a = 0 • Nos últimos 15 s: M.U.V. Mecânica I DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial b) Primeiro, vamos calcular a aceleração escalar nas três etapas do movimento. A partir desses valores, temos:
Mecânica I • y P Trajectória + O • X DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Vector Posição: é o vectorquedefine a posição de uma partícula relativamente a um referencial ortonormado xy.
Mecânica I • y Trajectória + o • X • z DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Vector Posição no espaço
Mecânica I • y • X • z DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Vector deslocamento Espaço percorrido: o espaço percorrido só é idêntico ao módulo do vector deslocamento se a trajectória for rectilínea e se não ocorrerem inversões de sentido. A um deslocamento nulo pode não corresponder um espaço nulo e a um mesmo deslocamento podem corresponder espaços diferentes.
Mecânica I y x DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Vector velocidade média e vector velocidade instantânea O vector velocidade média é a razão entre o vector deslocamento e o intervalo de tempo em que esse deslocamento ocorre, ou seja: O vector velocidade instantânea é dado pelo vector sobre o intervalo ∆t quando este tende para zero. A direcção de é tangente à trajectória no ponto onde se encontra a partícula no instante considerado.
Mecânica I DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Vector aceleração média e vector aceleração instantânea O vector aceleração média é dado por: A aceleração média tem a direcção e o sentido do vector . y x O vector aceleração instantânea é o limite para que tende o vector aceleração média quando o intervalo de tempo tende para zero.
Mecânica I • y Trajectória + o • X • z DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Projecções de um movimento tridimensional
Mecânica I Y Ymáx. X0 X Xmáx. DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Movimento de um projéctil numa trajectória plana Y0
Mecânica I DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial A componente horizontal do movimento é um movimento rectilíneo uniforme. A componente vertical é um movimento rectilíneo uniformemente variado.
Mecânica I Movimento circular Uniforme DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Componente normal e tangencial do vector aceleração Se a trajectória for curvilínea, o vector aceleração está sempre dirigido para a concavidade da trajectória. A aceleração normal, como o próprio nome indica, é dirigida para o centro da trajectória. No movimento circular uniforme, o vector aceleração, é perpendicular ao vector velocidade em cada ponto e de módulo constante.
Física y x DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial 1- Movimento curvilíneo acelerado: Num certo intervalo de tempo o movimento é acelerado se o módulo da velocidade aumentar. y x
Física DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial 2. Movimento curvilíneo retardado:Num certo intervalo de tempo o movimento é retardado se o módulo da velocidade diminuir. y y x x
Mecânica I DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial 3 - Movimento curvilíneo uniforme:Se num certo intervalo de tempo o módulo da velocidade for constante, o movimento diz-se uniforme. y y x x
Mecânica I DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial 4 - Componentes normal e tangencial do vector aceleração Se a trajectória for curvilínea, o vector aceleração está sempre dirigido para a concavidade da trajectória.
Mecânica I y x DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Componentes normal e tangencial do vector aceleração Considere-se uma partícula a descrever uma trajectória curvilínea no plano xy. No instante t a partícula encontra-se no ponto P com velocidade com velocidade e aceleração . Pode-se exprimir em função de duas componentes: - uma segundo a direcção tangente à trajectória, aceleração tangencial - uma segundo a direcção normal à trajectória, aceleração normal
Mecânica I DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Movimento Circular Designam-se por movimentos circulares aqueles em que a trajectória é circular ou seja o raio R é constante. Período, T: É o tempo gasto por um corpo para efectuar uma volta completa no circulo. Frequência, f: É o número de voltas efectuadas no circulo na unidade de tempo.
z Mecânica I Para ângulos pequenos: y Dividindo ambos os membros por dt , vem: x Se definirmos w como Sabendo que: velocidade angular escalar: vem: A velocidade angular é uma grandeza vectorial com direcção normal ao plano do movimento e sentido dado pela regra da mão direita. Podemos então escrever: DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Velocidade angular Considerando uma partícula a descrever uma trajectória circular no plano xy, em que R é o raio da trajectória. ds - arco descrito pela partícula; dt - intervalo de tempo; dθ - ângulo ao centro.
Mecânica I DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Exemplo: A velocidade angular de cada homem é igual ou diferente? E a velocidade escalar ? V1 < v2 < v3 < v4 w1 = w2 = w3 =w4 = w
Mecânica I Aceleração angular Derivando o vector velocidade angular em ordem ao tempo obtém-se: Como a velocidade é constante então: w = velocidade angular (rad/s) Δθ = ângulo percorrido (rad) Δt = tempo (s) v = velocidade escalar (m/s) r = raio (m) W = Constante DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial 1 - Movimento circular uniforme Neste tipo de movimentos o módulo do vector velocidade é constante, mas a sua direcção altera-se constantemente.
Mecânica I DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Exercícios de movimento circular e uniforme Um corpo realiza um movimento circular e uniforme, com velocidade de 5 m/s. Sendo a aceleração normal igual a 10 m/s2, determine o raio de sua trajectória. A Lua realiza, ao redor da Terra, um movimento aproximadamente circular e uniforme, com velocidade de 1000 m/s. Sendo o raio de sua órbita igual a 400 000 quilómetros, determine sua aceleração normal.
Mecânica I A B D C DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial No movimento circular uniforme, o vector aceleração é radial, portanto perpendicular ao vector velocidade em cada ponto e de módulo constante.
Mecânica I s DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial 2 - Movimento uniformemente variado (Rectilíneo e Circular) Neste tipo de movimento, a aceleração angular é constante. α = constante
Mecânica I DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Observe a animação. Em qual ponto do loop a aceleração normal sobre a moto é menor ? Observe a animação mostrada. Se o carro se move com velocidade linear constante. Em qual das curvas a aceleração normal é maior ?
Mecânica I DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Tabela Resumo das Características do Movimento Linear e Angular de uma Partícula Grandezas Físicas Lineares Grandezas Físicas Angulares Posição linear, s [m] Posição angular, θ [rad] Velocidade linear, v [m/s] Velocidade angular, w [rad/s] Aceleração linear, a [m/s2] Aceleração angular, α [rad/s2] Relação entre grandezas Físicas Lineares e Angulares do Movimento v = w.R ea = α R Equações do M. R. U Equações do M. C. U
Mecânica I DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Continuação Equações do M. C. U. V Equações do M. R. U. V
Mecânica I DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Tabela Resumo das Características do Movimento de uma Partícula Tipo de Movimento Características do Movimento Posição, Velocidade e Aceleração Rectilíneo Uniforme Rectilíneo U. Variado Circular Uniforme Circular U. Variado