1 / 68

ICPSR General Structural Equation Models

ICPSR General Structural Equation Models. Week 4 # 3 Panel Data (including Growth Curve Models). Causal models:. Cross-lagged panel coefficients [Reduced form of model on next slide]. Causal models:. Reciprocal effects, using lagged values to achieve model identification. Causal models:.

lenore
Download Presentation

ICPSR General Structural Equation Models

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ICPSR General Structural Equation Models Week 4 # 3 Panel Data (including Growth Curve Models)

  2. Causal models: Cross-lagged panel coefficients [Reduced form of model on next slide]

  3. Causal models: Reciprocal effects, using lagged values to achieve model identification

  4. Causal models: A variant Issue: what does ga(1,1) mean given concern over causal direction?

  5. Lagged and contemporaneous effects This model is underidentified

  6. Lagged effects model Ksi-1 could be an “event” 1/0 dummy variable

  7. First order model for three wave data(univariate) Time 1 Time 2 Time 3

  8. First order model for three wave data(univariate) Tests: Equivalent of stability coefficients (b1) Mean differences (see earlier slide)

  9. Second order model for three wave data(univariate) No longer comparable to b1 (t1 t2)

  10. Second order model for three wave data(univariate) Issue: adding appropriate error terms (2nd order)

  11. Multivariate Model for Three-wave panel data: cross-lagged effects (first order)

  12. Multivariate Model for Three-wave panel data: cross-lagged effects (first order) Equivalence of parameters: T1  T2 T2  T3

  13. Multivariate Model for Three-wave panel data: cross-lagged effects (second order)

  14. Multivariate Model for Four-wave panel data: cross-lagged effects (second order)

  15. Lagged and contemporaneous effects Three wave model with constraints: Under many circumstances, there will be an empirical under-ident. problem, though in theory this model is identified

  16. Example: • Canada, Quality of Life data • In directory \Panel in Week4Examples

  17. Panel Data model Model for attitudes about labour unions, 1977-1979 Items: 5-pt. agree/disagree 199D QD6B Unions too much power Q156C QK16F Scabs (gov’t prohibit strikebreakers) Q156D QK16G Workers on Boards Q156B QK16E Teachers should not have right to strike

  18. Source: Cdn. Quality of life panel study, 1977-1979 waves

  19. Panel Data model LISREL Estimates (Maximum Likelihood) LAMBDA-Y LABOR77 LABOR79 -------- -------- Q199D 1.000 - - Q156C -1.803 - - (0.141) -12.796 Q156D -1.148 - - (0.101) -11.350 Q156B 0.789 - - (0.098) 8.040 QD7B - - 1.000 QK16F - - -1.352 (0.109) -12.355 QK16G - - -0.755 (0.072) -10.479 QK16E - - 0.709 (0.084) 8.427

  20. Panel Data model BETA LABOR77 LABOR79 -------- -------- LABOR77 - - - - LABOR79 1.420 - - (0.138) 10.318 PSI Note: This matrix is diagonal. LABOR77 LABOR79 -------- -------- 0.125 -0.066 (0.017) (0.018) 7.529 -3.611 Squared Multiple Correlations for Structural Equations LABOR77 LABOR79 -------- -------- - - 1.356 W_A_R_N_I_N_G: PSI is not positive definite

  21. Panel Data model Completely Standardized Solution LAMBDA-Y LABOR77 LABOR79 -------- -------- Q199D 0.425 - - Q156C -0.559 - - Q156D -0.436 - - Q156B 0.262 - - QD7B - - 0.409 QK16F - - -0.524 QK16G - - -0.382 QK16E - - 0.277 BETA LABOR77 LABOR79 -------- -------- LABOR77 - - - - LABOR79 1.165 - - What is the problem here?

  22. Panel Data model Theta-epsilon was specified as diagonal Modification Indices for THETA-EPS Q199D Q156C Q156D Q156B QD7B QK16F -------- -------- -------- -------- -------- -------- Q199D - - Q156C 2.845 - - Q156D 3.439 20.324 - - Q156B 17.009 5.334 13.004 - - QD7B 83.881 42.939 10.988 4.108 - - QK16F 10.361 108.940 28.775 23.541 2.034 - - QK16G 19.366 28.336 141.658 5.494 0.242 7.172 QK16E 0.158 7.133 14.031 169.430 25.246 6.019

  23. Panel Data model

  24. Panel Data model Added error covariances: FR TE 5 1 TE 6 2 TE 7 3 TE 8 4 BETA LABOR77 LABOR79 -------- -------- LABOR77 - - - - LABOR79 1.094 - - (0.115) 9.547 Covariance Matrix of ETA LABOR77 LABOR79 -------- -------- LABOR77 0.116 LABOR79 0.127 0.199

  25. Panel Data model Added error covariances: FR TE 5 1 TE 6 2 TE 7 3 TE 8 4 PSI Note: This matrix is diagonal. LABOR77 LABOR79 -------- -------- 0.116 0.060 (0.020) (0.016) 5.935 3.721 Squared Multiple Correlations for Structural Equations LABOR77 LABOR79 -------- -------- - - 0.698

  26. Panel data model Cdn. Quality of Life 1977-81 ! Model for mean differences SY='H:\QOL3WAVE\imputed_data.dsf' SE Q199D Q156C Q156D Q156B QD7B QK16F QK16G QK16E / MO NY=8 NE=2 LY=FU,FI PS=SY,FR TE=SY BE=FU,FI TY=FR AL=FI LE LABOR77 LABOR79 VA 1.0 LY 1 1 LY 5 2 FR LY 2 1 LY 3 1 LY 4 1 FR LY 6 2 LY 7 2 LY 8 2 FR TE 5 1 TE 6 2 TE 7 3 TE 8 4 EQ TY 5 TY 1 EQ TY 6 TY 2 EQ TY 7 TY 3 EQ TY 8 TY 4 EQ LY 2 1 LY 6 2 EQ LY 3 1 LY 7 2 EQ LY 4 1 LY 8 2 FR AL 2 OU ME=ML MI SC ND=3 Panel Data model Alternative specification with stability coefficient: PS=SY BE=SD [or BE=FU,FI then FR BE 2 1]

  27. Panel Data ALPHA LABOR77 LABOR79 -------- -------- - - 0.043 (0.014) 3.051 Higher score = pro-union (ref. indicator: too much/too little power… too little=5 too much=1

  28. Panel Data Panel data model Cdn. Quality of Life 1977-81 ! Impact of TV newspapers on labor union attitudes SY='H:\QOL3WAVE\imputed_data.dsf' SE Q258 Q260 Q261 Q199D Q156C Q156D Q156B QD7B QK16F QK16G QK16E / MO NY=11 NE=4 LY=FU,FI PS=SY TE=SY BE=FU,FI LE NEWSP TV LABOR77 LABOR79 VA 1.0 LY 2 1 VA 1.0 LY 3 2 FR LY 1 1 FI TE 3 3 VA 1.0 LY 4 3 LY 8 4 FR LY 5 3 LY 6 3 LY 7 3 FR LY 9 4 LY 10 4 LY 11 4 FR BE 4 3 FR BE 3 2 BE 3 1 FR BE 4 2 BE 4 1 FR PS 2 1 FR TE 11 7 TE 10 6 TE 9 5 TE 8 4 OU ME=ML MI SC ND=3

  29. Panel Data LISREL Estimates (Maximum Likelihood) LAMBDA-Y NEWSP TV LABOR77 LABOR79 -------- -------- -------- -------- Q258 0.917 - - - - - - (0.176) 5.212 Q260 1.000 - - - - - - Q261 - - 1.000 - - - - Q199D - - - - 1.000 - - Q156C - - - - -1.891 - - (0.214) -8.819

  30. Panel Data BETA NEWSP TV LABOR77 LABOR79 -------- -------- -------- -------- NEWSP - - - - - - - - TV - - - - - - - - LABOR77 0.061 -0.005 - - - - (0.026) (0.011) 2.325 -0.406 LABOR79 0.047 -0.017 1.081 - - (0.030) (0.014) (0.113) 1.584 -1.216 9.564

  31. Panel Data Panel data model Cdn. Quality of Life 1977-81 ! Impact of TV newspapers on labor union attitudes ! Controls: education sex union membership SY='H:\QOL3WAVE\imputed_data.dsf' SE Q258 Q260 Q261 Q199D Q156C Q156D Q156B QD7B QK16F QK16G QK16E Q63 SEX Q201 RAGE Q157/ MO NY=11 NE=4 LY=FU,FI PS=SY TE=SY BE=FU,FI NX=5 NK=5 FIXEDX LE NEWSP TV LABOR77 LABOR79 LK MEMBER SEX EDUC AGE INCOME VA 1.0 LY 2 1 VA 1.0 LY 3 2 FR LY 1 1 FI TE 3 3 VA 1.0 LY 4 3 LY 8 4 FR LY 5 3 LY 6 3 LY 7 3 FR LY 9 4 LY 10 4 LY 11 4 FR BE 4 3 FR BE 3 2 BE 3 1 FR BE 4 2 BE 4 1 FR PS 2 1 FR TE 11 7 TE 10 6 TE 9 5 TE 8 4 OU ME=ML MI SC ND=3

  32. Panel Data BETA NEWSP TV LABOR77 LABOR79 -------- -------- -------- -------- NEWSP - - - - - - - - TV - - - - - - - - LABOR77 -0.025 -0.012 - - - - (0.034) (0.011) -0.738 -1.157 LABOR79 0.068 -0.010 1.033 - - (0.042) (0.013) (0.115) 1.622 -0.751 8.970 GAMMA MEMBER SEX EDUC AGE INCOME -------- -------- -------- -------- -------- NEWSP -0.017 0.011 -0.097 -0.014 -0.014 (0.039) (0.035) (0.009) (0.001) (0.005) -0.422 0.311 -11.303 -13.496 -2.898 TV -0.013 -0.150 0.025 -0.017 0.001 (0.070) (0.062) (0.015) (0.002) (0.009) -0.182 -2.408 1.685 -9.807 0.113 LABOR77 0.286 -0.056 -0.039 -0.005 -0.010 (0.036) (0.026) (0.008) (0.001) (0.004) 7.880 -2.131 -5.158 -5.331 -2.557 LABOR79 0.045 0.114 0.001 0.001 -0.006 (0.042) (0.033) (0.009) (0.001) (0.004) 1.082 3.487 0.069 0.966 -1.436

  33. Another model (panel7) BETA INEQ77 LABOR77 INEQ79 LABOR79 -------- -------- -------- -------- INEQ77 - - - - - - - - LABOR77 - - - - - - - - INEQ79 0.704 0.012 - - - - (0.069) (0.110) 10.214 0.105 LABOR79 -0.106 0.819 - - - - (0.044) (0.124) -2.400 6.622

  34. Re-expressing parameters:GROWTH CURVE MODELS Intercept & linear (& sometimes quadratic) terms • Suitable for panel models with >2 waves • Best for panel models with >3 waves

  35. Linear Growth Model LISREL: 2 manifest variable, 2 latent variable model LY matrix INT Slope V1 1 0 V2 1 1 TE matrix = elements equal PS matrix = SY,FR (parm1 in model = variance of INT, parm2 = variance of Slope) TY zero AL free (“parm1” and “parm2” above)

  36. Linear Growth Model • Interpretation: • intercept factor represents initial status • Slope factor represents difference scores (V2-V1) With single indicators, cannot estimate error variances (as with any single indicator SEM model) Parm1 = mean intercept Parm2 = mean slope value

  37. Linear Growth Model E.g., TV use, adolescents, hours/day Parm1 = 2.5 Parm2 = 1.0 Increase of 1 hour/day from t1 to t2 We will also get variances for the Intercept and the Slope factors Parm1 = mean intercept Parm2 = mean slope value

  38. Some growth curve trajectories: • Parallel stability

  39. Some growth curve trajectories: • Strict stability

  40. Single-factor LGM • Actually nested within 2 factor model • take 2 factor model, intercept with 0 mean and 0 variance or strictly proportional to slope Not generally the best model unless assumptions met: (cf. Duncan et al. p. 31: when rank ordering of individuals does not vary across time despite mean level changes) (can estimate var(e1),(e2),(e3) if we impose constraint v(e1)=v(e2)=v(e3) )

  41. Linear Growth Model A bit more complicated with latent variables instead of single manifest variables … but the same basic principle.

  42. Linear Growth Model LY matrix (LISREL) Int Slope V1 1 0 V2 1 1 V3 1 2 Same principle would apply to k time points where k>3 More time points: test of linearity of “growth” (changes in mean)* *general test: vs. “unspecified growth model”

  43. Unspecified 2 factor Growth Curve Model 1 free lambda parameter in LY matrix In k time-point model, all but first 2 time points are represented by free parameters

  44. 3 factor Growth Curve Model Parm 3 Non-linear growth

  45. 3 factor Growth Curve Model parm3 LY matrix INT LIN Quad V1 1 0 0 V2 1 1 2 V3 1 2 4 TE is constrained to equality across t’s PS is free AL is free (parm1-3) All TY elements 0 This is a “saturated” model (perfect fit by definition)

  46. Examples: Z:\baer\Week4Examples\LatentGrowth Single variable models: LGMProg1.ls8 (output=.out) intercept model LGMProg2.ls8 - single factor curve model LGMProg3.ls8 - intercept + slope LGMProg4.ls8 – intercept + slope + quadratic

  47. Where do “growth factors” fit into models? • Examination of predictors (antecedents) and consequences of change Note: Intercept-slope covariance now disturbance covariance PROGRAM LGMProg5

  48. Consequences Model LGMProg6.ls8 Dependent variable: job satisfaction, wave 8.

  49. Multiple indicators for the variable(s) involved in growth curves • “factor of curves” LGM • Intercept term and slope term (e.g.) constructed for each indicator • if there are 3 variables & 4 waves, we will have an intercept term based on 4 manifest variables representing time x 3 manifest variables per time (3 intercept terms) • “common intercept” variable will have 3 indicators (intercept terms) • “common slope” will have 3 indicators (slope terms)

  50. Error variances now estimated (not constrained to equality).. Could include corr. Errors too

More Related