490 likes | 640 Views
Chapter 15. 回饋放大器. 本章重點一覽. 15.1 回饋的起源 正 / 負回饋 15.2 負回饋的優點 15.3 回饋放大器型態 串聯回饋 並聯回饋 15.4 串聯回饋放大器. 本章重點一覽. 15.5 並聯回饋放大器 15.6 穩定問題 振盪條件 單 / 雙 / 三極點放大器 15.7 增益相位邊距 15.8 頻率補償 15.9 結語. 圖 15.1. V o. V I. V S. +. A. +. V o. . 15.1 回饋的起源.
E N D
Chapter 15 回饋放大器
本章重點一覽 • 15.1 回饋的起源 • 正/負回饋 • 15.2 負回饋的優點 • 15.3 回饋放大器型態 • 串聯回饋 • 並聯回饋 • 15.4 串聯回饋放大器
本章重點一覽 • 15.5 並聯回饋放大器 • 15.6 穩定問題 • 振盪條件 • 單/雙/三極點放大器 • 15.7 增益相位邊距 • 15.8 頻率補償 • 15.9 結語
圖15.1 Vo VI VS + A + Vo 15.1 回饋的起源 • Q : 能否以“ 一個 ”增益為A的放大器,做 出增益遠大於A的放大電路 ? • E. H. Armstrong首度提出回饋的創見,巧妙將輸出訊號拉回輸入端,使信號反復的經過放大器而達到多次放大的目的。
15.1 回饋的起源 • 迴路增益(loop gain) • A為放大器增益,β稱為回饋係數, 表示Vo回饋給輸入端的比例,於是 信號走一圈迴路會被放大Aβ倍,稱Aβ為迴路增益。 • 輸入端看到的信號可表為 : 其中τ為迴路傳輸延遲
15.1 回饋的起源 • 正回饋(positive feedback) • 信號在電路中行進速度非常快,所以τ→ 0,前式可改寫為 : • 在 Aβ > 0 的情況下,回饋是加強輸入信號的,使得放大器輸入端看到的信號VI(t)比真正輸入信號Vs(t)大,稱為正回饋。
圖15.1 (重複) Vo VI VS + A + Vo 15.1 回饋的起源 • 例1.假設圖15.1中A = 10,若(1) = 0.05,(2) = 0.09,試估算其增益。
15.1 回饋的起源 • 由前例可知利用正回饋觀念,只要適當調整回饋係數即可大幅提高增益,但若設計不當使得Aβ > 1,會使得Vo趨近無窮大造成信號嚴重變形(實際上是受限於電源電壓)。 • 了解回饋真正的物理內涵,就知道這方法的確完美解決真空管放大器增益不足的問題。
圖15.2 Vo VI VS + A Vo 15.1 回饋的起源 • 負回饋(negative feedback) • 若回饋信號與輸入信號為相減而非相加的關係,則信號走一圈迴路被放大-Aβ倍,可推得 : • 回饋的結果將減弱輸入信號,所以稱為負回饋。
15.1 回饋的起源 • 負回饋情況下,可以發現不論Aβ是否大於1,都不會產生信號趨近於無窮大的情況,天生就是個穩定的系統 ! • G = A / (1 + Aβ) • 結果為降低增益,在只注重提升增益的年代,被視為毫無用處的性質,但以後卻漸漸發展出廣泛的功能,是正回饋遠遠比不上的。
15.2 負回饋的優點 • 負回饋的優點 • 增加增益穩定度(increase gain stability) • 延伸放大器頻寬(extend amplifier bandwidth) • 降低非線性變形(reduce nonlinear distortion) • 降低雜訊(reduce noise) • 前兩者最重要且最常應用在電路設計上。
15.2 負回饋的優點 • 增益穩定度(gain stability) • 一般放大器輸入輸出關係為 :Vo = A · Vs • 放大器因為溫度變化或元件老化造成增益的變動為ΔA,增益穩定度定義為 : S = S 愈小表示放大器愈穩定
15.2 負回饋的優點 • 增益穩定度(gain stability) • 因為 且由微積分基本定理可推得 : • 負回饋放大器的穩定度比原本放大器好上(1 + Aβ) !
圖15.2 Vo VI VS + A Vo 15.2 負回饋的優點 圖15.2的負回饋放大器若 = 0.1,而由於溫度變化造成A=98~102倍。請估算回饋增益的變化範圍及其穩定度。 • 例2.
15.2 負回饋的優點 • 放大器頻寬(amplifier bandwidth) • 一般放大器的高頻響應簡單表示為 : A(f) = • 在負回饋放大器中G(f) = f’3dB = (1+A0) f3dB
15.2 負回饋的優點 • 負回饋的結果雖然使增益降低(1+A0)倍,但將高頻3dB頻率提升(1+A0)倍,即提升頻寬為(1+A0)倍。 • 增益穩定度也被提高(1+A0)倍。 • 現在電路設計中,增益穩定度和頻寬的重要性遠超過提升增益的倍率 !
15.3 回饋放大器型態 • 實際電路中,回饋係數通常是個正數且小於1,但放大器可能是正相放大器也可能是反相放大器﹔另外以廣義的觀點而言,回饋能以電壓方式回饋,也能以電流方式回饋,因此造成許多不同型態的回饋放大器,但是其基本觀念還是與圖15.2相同。 • 依放大器種類(正相或反相)與回饋的形式(電壓回饋或電流回饋)可歸納為四種類型,而我們只介紹最重要的兩種。
Ro Vo VS + VI Ri + AVI Vf R2 R1 圖15.3 15.3 回饋放大器型態 • 串聯回饋(series feedback amplifer) • 虛線內是放大器等效電路,以正相放大器放大信號,將Vo回饋至輸入端,並假設 Ri >> R1,Ro趨近於0 ,可推得 : • 回饋電路與輸入端呈串聯方式。
Rf Vo Ro + VI Ri AVI + VS 圖15.4 15.3 回饋放大器型態 • 並聯回饋(shunt feedback amplifier) • 虛線內是放大器等效電路,以反相放大器放大信號,透過電阻Rf將Vo回饋至輸入端,由於回饋電路Rf和輸入端呈並聯形式,故稱並聯回饋放大器。
15.3 回饋放大器型態 • 串聯回饋及並聯回饋是因應正相放大器和反相放大器的自然選擇。 • 若使用正相放大器,在輸入端必須減去βVo才構成負回饋,以電路的觀點而言,最簡單的做法就是如圖15.3利用串聯方式達成相減的動作。 • 若使用反相放大器,則是在輸入端加上βVo才構成負回饋,以電路觀點而言,最簡單達成相加動作的方法是圖15.4的並聯結構。 • 熟悉原理之後便可判斷所設計的電路是否正確合理。
RC Rf Vo Q1 圖15.6(b) VS RC2 RC1 Vo Q2 VS Q1 R2 R1 圖15.6(a) 15.3 回饋放大器型態 • 圖15.6(a)的簡化電路圖(忽略偏壓細節),因為Q1和Q2皆為反相放大器,串接之後成為正相放大器,而Vo以串聯形式回饋至輸入端,所以是正確的負回饋放大器設計。 • 圖15.6(b)Q1為CE放大器(反相放大器),而Vo以並聯形式回饋至輸入端,所以也是正確的負回饋放大器設計。
圖15.7(a) 圖15.7(b) RC2 RC3 RC2 RC1 RC1 Vo Vo Q3 Q2 Q2 VS Q1 VS Q1 R2 R1 Rf 15.3 回饋放大器型態 • 圖15.7(a)中Q1、Q2和Q3皆為反相放大器,串接之後仍是一個反相放大器,但Vo以串聯形式回饋,顯然是錯誤的作法,結果造成正回饋而非負回饋。 • 圖15.7(b)中Q1、Q2串接成為正相放大器,但以並聯形式回饋,同樣是錯誤的作法。
Ro Vo VS + VI Ri + AVI RC2 Vf RC1 Vo R2 R1 Q2 VS Q1 R2 R1 圖15.3 圖15.6(a) 15.4 串聯回饋放大器 • 圖15.6(a)的正相放大器等效上可視為圖15.3虛線部分的線路。
圖15.8 RS Rof Ro RS Vo Vo … … … … + + RL + + Vin Rif VI AVI Ri AfVin VS RL VS R2 R1 (a) (b) 15.4 串聯回饋放大器 Rif為等效輸入電阻Rof為等效輸出電阻Af為開路增益(open-loop gain)
Rof Ro ix ix Vo Vo + + VI + + Vin AVI Rif Ri AfVin Vx Vx Vf R2 R1 電路A 電路B 圖15.9 15.4 串聯回饋放大器 大幅增加 ! Rof = (R1+R2) // 大大減低 !
Rof Ro ix ix Vo Vo + + VI + + Vin AVI Rif Ri AfVin Vx Vx Vf R2 R1 電路A 電路B 圖15.9 15.4 串聯回饋放大器 G = = Af· ·
RC2 5K RC1 4K Q2 RS 10K RL Q1 1K VS R2 900 R1 100 圖15.11 15.4 串聯回饋放大器 • 例3.圖15.11的回饋放大器(省略偏壓電路),假設Q1和Q2的偏壓電流IC皆為1mA,BJT的= 100,試計 算回饋增益。
+ + V1 r1 V2 r2 gm1V1 gm2V2 RC1 RC2 Ro + VI Ri AVI + 圖15.12 圖15.13 15.4 串聯回饋放大器 • 例3.圖15.11的回饋放大器(省略偏壓電路),假設Q1和Q2的偏壓電流IC皆為1mA,電晶體= 100,試計 算回饋增益。
Rf Rof Ro + + Vin Rif VI Ri AVI AfVin 圖15.14(a) + + 15.5 並聯回饋放大器 • 將左側的並聯回饋放大器以右側的等效電路表示 :
Ro Vo + VI Ri RM1 RM2 AVI + 圖15.14(b) 15.5 並聯回饋放大器 • 利用米勒定理來簡化分析 • 將Rf分解為RM1和RM2兩個等效電阻
Ro Vo + VI Ri RM1 RM2 AVI + 圖15.14(b) 15.5 並聯回饋放大器
圖15.15 (重複) + Rf if ix Ro RS i1 VI Ri AVI Vx 15.5 並聯回饋放大器 G = = Af · ·
圖15.16(a) 圖15.16(b) VCC RC =4K Rf Vo RS 10K Q1 1K VS Ro + + VI Ri AVI 15.5 並聯回饋放大器 • 例4.圖15.16(a)是一個並聯回饋放大器,假定Q1的IC = 1mA,BJT的= 100,請估算其增益(Vo / VS)。
15.6 穩定問題 • 一個迴路系統加上條件許可,震盪會自然產生。 • 回饋放大器內有一個迴路,在條件許可下就會產生振盪。發生振盪時,放大器會自行產生一個高頻的弦波信號,此信號頻率和輸入信號完全無關,而是由迴路的特性所決定。 • 振盪信號對真正信號而言是一種干擾(interference),所以要極力避免振盪的產生。
15.6 穩定問題 • 振盪條件 • 振幅條件 : M(f) > 1 • 相位條件 : θ(f) = n · 2= 0ْ • 判斷一個迴路是否振盪的方法 • 先由相位條件找出是否存在使θ(f) = 0ْ的f* • 若M(f*) < 1則無法振盪,反之則產生振盪。
15.6 穩定問題 • 判斷是否振盪的步驟如下 : • 先由 找出f180,若f180不存在,則迴路不可能振盪。若f180存在時,檢視|A(f180)|· β。 • 若|A(f180)|· β> 1則振盪,反之則穩定。
15.6 穩定問題 • 一般將A(f)表為以下通式 :A(f) = • f1,f2,…… fn稱為的高頻極點(high-frequency pole),主要是由電晶體內部的寄生電容造成(詳細內容請回顧第十三章)。
15.6 穩定問題 • 單極點放大器(single-pole amplifier) • f180不存在,因此單極點放大器所構成的回饋放大器不可能振盪。
15.6 穩定問題 • 雙極點放大器(two-pole amplifier) • f180也不存在,因此雙極點放大器所構成的回饋放大器亦不可能振盪。
15.6 穩定問題 • 三極點放大器 • 三個極點的情況下有可能產生振盪,必須謹慎選取β值。 • 欲保持穩定必須 故能允許的最大回饋係數為
圖15.2 (重複) Vo VI VS + A Vo 15.6 穩定問題 • 例5.圖15.2中假如,其中Ao = 103,f1= 1MHz,f2 = 10MHz,f3 = 100MHz。在保持穩定(不振盪)的情況下,請估算最大的回饋係數。
15.7 增益/相位邊距 • 當A(f)有三個或更多的極點時,β必須有所限制。 • |A(f180)|·β與1的差距是設計上重要的考量,為了彰顯此差異而定義了增益邊距(gain margin, GM)GM = 20 log • GM以dB的形式顯示|A(f180)|·β與1的差距,值愈大表示放大器愈穩定,需保證GM > 0否則將產生振盪。
15.7 增益/相位邊距 • 相位邊距(phase margin, PM) • 在好的設計中,當= -180時,對應的|A(f180)|·β應該小於1;反之當|A(f180)|·β= 1時,對應的應低於 -180 。 • |A(f180)|·β= 1對應的頻率為fu ,將fu對應的角度與 -180 的差距定義為相位邊距。
Gain dB |A(f)| fu GM f(log sacle) 0 f180 f(log sacle) 180 PM Phase 圖15.18 15.7 增益/相位邊距 • 相位邊距(phase margin, PM) • 一般設計通常保持45ْ以上的PM以保證有足夠的餘裕以避免振盪情形發生。
圖15.2 (重複) Vo VI VS + A Vo 15.7 增益/相位邊距 • 例6.圖15.2中假如,其中Ao = 103,f1 = 1MHz,f2 = 10MHz,f3 = 100MHz。假設β = 0.05,求PM和GM。
15.8 頻率補償 • 頻率補償(frequency compensation) • 頻率補償是在不改變β的情況下,將A(f)改變為Á(f),使得|Á(f180)|·β < 1,就能避免發生振盪。 • 方法是加入一新的極點fD使得A(f)變成Á(f),而新極點的頻率比原本的極點低,換句話說,會降低原本的高頻響應。 • 電路設計上,可藉著電容達成加入fD的做法。
|A|(dB) 20dB/decade |A0| |A(f180)| |A'(f180)| 40dB/decade 60dB/decade f(log scale) fD f1 f2 f3 f180 圖15.19 15.8 頻率補償 • 適當選取fD使得|Á(f180)| ·β < 1即可避免振盪。 • 可選擇| A´(f)| ·β = 1發生在f = f1,即fu = f1通常 f1 << f2和 f3 ,之後詳細推導可得 : • 對應的相位邊距為 45ْ。
圖15.2 (重複) Vo VI VS + A Vo 15.8 頻率補償 • 例7.圖15.2中假如 A(f) =其中Ao = 103,f1 = 1MHz, f2 = 10MHz,f3 = 100MHz • (1)假設,回饋放大器是否穩定? • (2)若不穩定,請利用頻率補償法以獲得PM = 45
15.8 頻率補償 • 一般OP的Ao很大,所以在負回饋的情況下,非常容易產生振盪。為避免振盪,OP電路設計者會刻意加入一個頻率極低的極點(fD),使得電路即使在 = 1的情形下(OP作為unit-gain amplifier),仍然有45的相位邊距而不會產生振盪。