1 / 21

the approach initiated in: Anchishkin, Gavrilik, Iorgov, Eur. J .Phys. A , 2000 ;

Intercepts of multi-pion correlation functions within different deformed Bose gas models A. Gavrilik (BITP, Kiev) in collab. with Anastasiya Rebesh.

lethia
Download Presentation

the approach initiated in: Anchishkin, Gavrilik, Iorgov, Eur. J .Phys. A , 2000 ;

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Intercepts of multi-pion correlation functionswithin different deformed Bose gas modelsA. Gavrilik(BITP, Kiev)in collab. with Anastasiya Rebesh

  2. based on:A.Gavrilik, SIGMA, 2, paper 74, p.1-12, 2006 [hep-ph/0512357] A.G., A.Rebesh, Mod. Phys. Lett. A, 2008 A.G., I.Kachurik, A.Rebesh, J. Phys. A, 2010 A.G., A.Rebesh, arXiv: 1007.5187 [quant-ph/0512357] the approach initiated in: Anchishkin, Gavrilik, Iorgov, Eur. J .Phys. A, 2000; Mod. Phys. Lett. A, 2000 Anchishkin, Gavrilik, Panitkin, Ukr. J. Phys. A, 2004 Some next steps in: L.Adamska, A.Gavrilik, J. Phys. A, 2004 [hep-ph/0312390] A.Gavrilik, SIGMA, 2, paper 74, p.1-12, 2006 [hep-ph/0512357] Q.Zhang, S.Padula, Phys. Rev. C, 2004

  3. Data on π+π+andπ–π–correlations ( B.I.Abelev et al.(STAR collab.)., PR C80:024905 (2009); arXiv:0903.1296 Pion Interferometry in Au+Au and Cu+Cu Collisions at √sNN=62.4 and200 GeV ) NB!”thetrend”is seen: 1) Monotonic increasing; 2) Concavity upwards; 3) Saturation by a constant < 1 (= case of Bosons)

  4. -- Fibonacci oscillators, with property of en.levels: En+1= λEn + ρEn-1 -- quasi-Fibonacci oscillators, with property of en. levels: OUR GOLE:● use deformed oscillators(DOs)(=deformed bosons), develop corresp. version of deformed Bose gas – – and try tomodel the above “trend”● we examine a number of variants of DOs from two verydifferent classes: En+1= λn En+ ρn En-1 Typical:p,q-oscillators, for whichλ=p+q, ρ= -pq Typical: μ-oscillator, for whichλn=λ(n,μ),ρn=ρ(n,μ) with definite A.G., I.Kachurik, A.Rebesh, J. Phys. A, 2010

  5. Why deformed q-oscillators, and(ideal) q-Bose gas models? • (a)finite proper volume of particles; • (b)substructure of particles; • (c)memory effects; • (d)particle-particle, or particle-medium interactions • (i.e, non-ideal pion or Bose gas); • (e) possible existence of non-chaotic (partially coherent) components of • emitting sources;effects from long-lived resonanses (e.g., put in the • core-halo picture); • • (g) non-Gaussian (effects of) sources; • (h) fireball -- short-lived, highly non-equilibrium, complicated system. • If we use 2-parameter say q,p-deformed Bose gas model, then: • 1) It gives formulae for 1-param. versions (AC,BM,TD,…) as special cases; • 2)q,p-Bose gas model accounts jointly for any two independent reasons (to • q-deform)from the above list. • About items (b)& (d) --- on next slide Important also in other contexts

  6. (b) QUASIBOSONS VSdeformed oscillators: It is shown(e.g. S.Avancini, G.Krein, J.Ph.A1995)that algebra of quasiboson (composite boson) operators, realized in terms of constituent’s fermionic operators, indeed modifies: If: , (a,a†,b,b† -- fermionic) then: where and Δαβcan be made using deformed oscillator! (more detailed analysis: A.G. & Yu.Mishchenko, in preparation) (d) Account ofinterparticle interactions in deformation, then: non-idealBose gas ideal deformedBose gas (e.g.,A.Scarfone, P.Narayana Swamy, J.Ph.A 2008);

  7. Deformedoscillators of “Fibonacci class” --- q,p-oscillator: (q,p-bracket) ---q-oscillators: 1) ifp=1-AC (Arik-Coon) type, 2)ifp=q.-1-BM (Bied.-Macfarlane) type, 3)ifp=q-TD (Tamm-Dancoff) type, and many others in this class: 4)…),e.g.,ifp = exp (½(q-1)) (A.G., A.Rebesh, Mod.Phys.Lett.A 2008) .

  8. n-Particlecorrelationsinq,p-Bose gas model. Ideal gas of q,p-bosons: thermal averages, one-particledistribution: (q,p-Bose) (AC type q-Bose) Bose AC type q-Bose BM q-Bose q,p-Bose →

  9. Intercepts of 2-particlecorrel. Functions & their asymptotics (BM type, q=exp(iθ)) NB: Asymptotics (βω→∞)of intercepts isgiven solely bythe deformation parameter(s)q orq,p

  10. Intercepts of3-particlecorrel. functions & their asymptotics (BM type, q=exp(iθ)) NB: Asymptotics (βω→∞)of intercepts aregiven solely bythe deformation parameter(s)q orq,p

  11. Intercept (maxim.value) ofn-particle correlation function for thep,q-Bosegasmodel General formula:L.Adamska,A.Gavrilik, J. Phys. A (2004) Asymptotics(βω→∞) of interceptis given byq(orq & p): q,p

  12. Interceptsin pq-Bose gas model VSexper.data on pion correlations (NA44at CERN: I.G.Bearden et al., Phys.Lett. B, 2001) pure Bose value section 2 Equating our f-las for λ(2) & λ(3) to exper.values yields two surfaces βω section 1 (A.Gavrilik, SIGMA, 2 (2006), paper 74,1-12, [hep-ph/0512357] )

  13. Two sections: 1) set • 2) set • λpq(2) NB: we have 1σ contours λpq(3) section 1 section 2 Csanad (for PHENIX), NP A774 (2006) nucl-ex/0509042 2 phenom. param.

  14. Deformedoscillators of “quasi-Fibonacci” class --- μ-oscillator:structure f-n (μ-bracket) ---(μ;p,q)-oscillators: 1) μ-AC type, 2)μ-BM type, 3)μ-TDtype, (A.G., I.Kachurik,A.Rebesh, J.Ph. A2010)

  15. Interceptλμ(2)of 2-pion correl. function VS mean momentum, with a s y m p t o t i c s: 0.8306 0.8332 0.7566 0.7680 Intercepts of momentum correlation functions inμ-Bose gas model and their asymptotics, arXiv: 1007.5187 A. Gavrilik, A.Rebesh,

  16. Behaviour of , μ-Bose gas λ(3) Interceptλμ(3)of 3-pion correl. functionVS particle mean momentum KT: 3.6097 3.0083 Asymptotics is given as: μ=0.1 μ=0.15 (to μ3 ) (to μ5 ) Intercepts of momentum correlation functions inμ-Bose gas model and their asymptotics, arXiv: 1007.5187 A. Gavrilik, A.Rebesh,

  17. Characteristic function r(3)(KT) made from λ(2) &λ(3): π/30 (U.Heinz, Q.Zhang, PRC 1997) Also, it has sense of cos Φ – spec. phase (H.Heiselberg, A.Vischer, nucl-th/9707036) π/4 BM typeq-Bose gas μ-Bose gas

  18. Data- Theory NB: centrality (left) temperature (right)

  19. SUMMARY • The explored models, even from different classes (Fibo. or quasi-Fibo.), provide KT dependence, and naturally mimic ’thetrend’ • We have explicit f-las for 2-,3-,…,n-particle correlation intercepts λp,q(n)(K,T), λμ(n)(K,T) & rp,q(3)(K,T) or rμ(3)(K,T) (exact in p,q-case, approximate in μ-case) • Basic fact: asymptotics is given in terms of deform. parameters solely: λp,q(n),asymp. =f(p,q); λμ(n),asymp. =g(μ), etc. • Having fixed deform. parameter (from asymptotics, using high KT bins), the temperature is fixedfrom lowerKT bins • So, we await much more experim. data! (see next.slide)

  20. What isneeded from experiment. side,to make choisefromamong many models: • More data onπ±π± correl. inters. λ(2)(for higher & lowerKT) • Data onπ±π±π±correl. inters.λ(3)(for wide range ofKT) • Data on the functionr(3)(KT)(for wide range ofKT ) THANK YOU!

More Related