260 likes | 519 Views
Pipe Network Analysis. by Marc Pitman (director) and Andrey Korchmar (secretary). 1.11 cfs. Junction 2. Junction 1. 12’’- 3000’. 1. 4.45 cfs. 6’’- 1000’. 3. 4. 8’’- 1000’. 10’’- 3500’. 2. 12’’- 1500’. 5. 3.34 cfs. Junction 4. Junction 3. Figure 1: A Small Pipe Network.
E N D
Pipe Network Analysis by Marc Pitman (director) and Andrey Korchmar (secretary)
1.11 cfs Junction 2 Junction 1 12’’- 3000’ 1 4.45 cfs 6’’- 1000’ 3 4 8’’- 1000’ 10’’- 3500’ 2 12’’- 1500’ 5 3.34 cfs Junction 4 Junction 3 Figure 1: A Small Pipe Network Pipe Network Analysis
1.11 cfs Junction 2 Junction 1 12’’- 3000’ 1 4.45 cfs 6’’- 1000’ 3 4 8’’- 1000’ 10’’- 3500’ 2 12’’- 1500’ 5 3.34 cfs Junction 4 Junction 3 Figure 1: A Small Pipe Network F1 F2 F3 F4
1.11 cfs Junction 2 Junction 1 12’’- 3000’ 1 4.45 cfs Loop 1 3 6’’- 1000’ 4 8’’- 1000’ 2 Loop 2 10’’- 3500’ 12’’- 1500’ 5 3.34 cfs Junction 4 Junction 3 Figure 2: A Small Pipe Network Loops
Junction 2 1.11 cfs Junction 1 12’’- 3000’ 1 4.45 cfs Loop 1 3 6’’- 1000’ 4 8’’- 1000’ 2 Loop 2 10’’- 3500’ 12’’- 1500’ 5 3.34 cfs Junction 4 Junction 3
Junction 2 1.11 cfs Junction 1 12’’- 3000’ 1 4.45 cfs Loop 1 3 6’’- 1000’ 4 8’’- 1000’ 2 Loop 2 10’’- 3500’ 12’’- 1500’ 5 3.34 cfs Junction 4 Junction 3
Newton’s Method y • Guess a first approximation to a root of the equation • Use the first approximation to get a second, the second to get a third, and so on, using the formula Root sought x 0 xn