350 likes | 489 Views
High-Power Proton Drivers. Alessandro G. Ruggiero Brookhaven National Laboratory FFAG 03 KEK International Center Japan, July 7 - 11, 2003. There are several Applications that require High-Power Proton Drivers. Nuclear Physics Facilities Spallation Neutron Sources
E N D
High-Power Proton Drivers Alessandro G. Ruggiero Brookhaven National Laboratory FFAG 03 KEK International Center Japan, July 7 - 11, 2003
There are several Applications that require High-Power Proton Drivers • Nuclear Physics Facilities • Spallation Neutron Sources • Production of Tritium • Nuclear Waste Transmutation • Energy Production • Long-Baseline Neutrino Oscillation • Neutrino Factories • Muon Colliders • … Alessandro G. Ruggiero
Accelerator Technology • Rapid Cycling Accelerators • Accumulator Rings • Cyclotrons • Fixed-Field Alternating Gradient • Linear Accelerators (Room Temp.) • Linear Accelerators (SuperCond.) • Induction Linear Accelerators Alessandro G. Ruggiero
Nuclear Physics FacilitiesEHF, AHF, JHF, TRIUMPF II, … RT Linac 1.2 GeV 30-GeV Main Ring Targets Continuous Beam 9-GeV Booster Cyclotron Stretcher Ring Typically 20-50 GeV High-Rep Rate 5-30Hz Intensity ~ 1013 protons/pulse Average Power ~ 1-5 MW AC Efficiency ~ few % (30-50 MW AC Power) Alessandro G. Ruggiero
AGS now and Upgrade Alessandro G. Ruggiero
Spallation Neutron Sources • Modes of Operation • Short Pulse 1 - 2 µs • Long Pulse 1 - 10 ms • Continuous Source • Requirements • Around 1 GeV energy range • 1 - 20 MW • > 1015 neutrons/ cm2 / s Alessandro G. Ruggiero
Existing Facilities • LAMPF / LANSCE • RT Linac 800 MeV 60 Hz / 10 ms 1 MW • PSR • Accumulator Ring SP 80 KW • ISIS • RCS 800 MeV SP 160 kW • ANL - IPNS • RCS 500 MeV SP 10 kW • PSI • Cyclotron 600 MeV CW 600 kW Alessandro G. Ruggiero
Accumulator Target 800-MeV RTL 70-MeV RTL Target 800-MeV RCS Layouts • LANL-PSR • ISIS • PSI 600-MeV Cyclotron Target Alessandro G. Ruggiero
Oak Ridge SNS 1.3-GeV SCL injecting in Accumulator Ring Hg -Target Short Pulse Mode 1.5 µs Average Power 1.3 MW Repetition Rate 60 Hz Design Requirement: Uncontrolled Losses < 10–4 (< 1 W/m) 1-ms Pulse Duration Accumulator RT Linac SCL Linac Alessandro G. Ruggiero
SuperConducting Linacs (Pulsed) Alessandro G. Ruggiero
Proposed Neutron Sources • ESS • BNL-PSNS 2 x 2.5 MW @ 50 Hz 1.3-GeV SCL Targets Double Ion Source Compressor Ring 3.6-GeV RCS 2 x 2.5 MW @ 60 Hz 100 mA H– Targets 600-MeV RTL 30-Hz RCS Alessandro G. Ruggiero
Accelerator-based Continuous Neutron Source Alessandro G. Ruggiero
Dee Cyclotrons Deflector Step given by Energy Gain RF Source Trajectories get densier at Extraction Energy & Power Limitation to avoid Activation Alessandro G. Ruggiero
Fixed-Field Alternating Gradient Accelerator • Constant Field Sector Magnets • Large Aperture (~ 1m) • Edge Focusing • Injection from low-energy Linac • Multiturn-Injection (H–) • Space Charge (losses) • Adiabatic Capture & Acceleration • Motion spirals outward • Parking and Stacking Orbit • Extraction with Septum/Kicker B1 B2 Alessandro G. Ruggiero
Switches Induction Linac • No RF • Sequence of High Power Transformers • Moving DC Current (Field) Pulse • Large Transverse Aperture (60 cm) • Short Beam Pulse (< 1 µs) • High beam Pulse Current (> 100 A) • High Repetition Rate • Low Accelerating Gradient (< 1 MV/m) Alessandro G. Ruggiero
Induction Linac Positive Ion Source FFAG Accelerator Induction Linac - FFAG A.G. Ruggiero, G. Bauer, A. Faltens, R. Kustom, S.A. Martin, P. Meads, E. Zaplatin, K. Ziegler ICANS-XIII, Villigen PSI, Switzerland • High-Intensity Short Pulse • Positive Ions • One-Turn Injection (No Foil Stripping) • No Accumulation • No Stacking • Reduced Concern of Uncontrolled Activation Alessandro G. Ruggiero
Induction Linac – FFAG Injector Parameters Alessandro G. Ruggiero
Induction Linac – FFAG FFAG Accelerator Parameters Alessandro G. Ruggiero
Multi-Cavity Proton Cyclotron AcceleratorChangbiao Wang, V.P. Yakovlev, J.L. Hirshfield, PAC’03, Portland (OR) I-peak = 0.915 A I-ave = 0.122 A Beam Radius = 0.9 mm Pulse Period = 125 ns Duration = 16.7 ns Energy Spread = 1.2 keV 952.7 MeV 1 MeV TE111 Solenoid Field = 8.1 T Alessandro G. Ruggiero
Accelerator for Production of Tritium(and Nuclear Waste Transmutation) RT Linac 700-MHz, 4-Cells, Doublet-Focusing SCL Target Tungsten / SS b = 0.48 b = 0.71 100 MeV 260 MeV 1000 MeV b = 0.43 b = 0.62 b = 0.88 908 m 100 MW CW Proton Power 3/16 Tritium Production Goal (1995) AC Efficiency 40% (250 MW AC-Power) 50 cm Thermal energy deposition has a limit (~10kW/cm2) Shock thermal waves absent in CW mode 50 cm Alessandro G. Ruggiero
Energy Production • SCL are most AC efficient (~ 40%) • Magnets require AC Power (10-20%) • Large demand of AC Power of 10’s to 100’s MW • AC Power Limitation (Reactors?) • Need of Energy recovery Scheme • Electrons can be decelerated, but Protons are depleted on Targets Alessandro G. Ruggiero
Energy Amplifier Target is a granular mixture of inertial material (W or Pb) and of fissionable material (232 Th). Neutrons are initially produced by Spallation of the inertial material. Each spallation neutron initiates a chain reaction with the fissionable material, so that more neutrons are produced. Sub-critical Reactor k = 0.98 Alessandro G. Ruggiero
µ± µe π± protonXe± π Long-Baseline Neutrino OscillationNeutrino FactoriesMuon Collider LBNO CERN-GSNL Fermilab BNL Japan NF CERN ISIS US Collaboration µC International Collaboration Alessandro G. Ruggiero
CERN - Gran Sasso 500 kW Alessandro G. Ruggiero
BNL Homestake 2540 km BNL Homestake Super Neutrino Beam (28 GeV, 1 MW)Fermilab(0.5 - 2 MW, 40 GeV primary proton beam) Alessandro G. Ruggiero
8-GeV Fermilab SCL 8 GeV (1) (2) (3) (4) Main Injector (1) SNS Front-End @ 402.5 MHz (2) DTL @ 402.5 MHz up to 87 MeV (3) 805-MHz SNS type SCL in three sections (b = 0.47, 0.61, 0.81) (4) 1.2 GHz “TESLA” cryomodules from 1.2 to 8 GeV (b = 1) Active Length 671 m Repetition Rate 10 Hz Beam Current 25 mA Pulse Length 1 ms Beam Intensity 1.5 x 1014 protons / pulse Linac Beam Power, Ave. 2 MW Peak 200 MW Alessandro G. Ruggiero
Collaboration Proposal of n - Factory Alessandro G. Ruggiero
Alternative Scheme for Neutrino Factory π-µ Production Channel µ Storage Ring • a 15-GeV Proton Driver (PD), • a π - µ Production Channel (πµPC), that is a solid target immediately followed by a transport channel made of a super-conducting 20-T solenoid magnet where theπ mesons decay and the µ mesons are produced, • an accelerating section consisting of a 2-GeV SCL with two re-circulating SCLs (µSCL) for the acceleration of the µ mesons to 32 GeV, and • a 32-GeV muon Storage Ring (µSR), where the µ mesons circulate until they decay in neutrinos. • No Ionization Cooling required Beam Proton Driverµ SC Linac & Re-circulators Alessandro G. Ruggiero
P D I nj ec to r 2 G e V 3, 6, 9, 12, 15 G e V T a r g et P D 5, 8, 11, 14 G e V R e- c irc ul at or ( 4 - p a ss e s ) 1 G e V S C S e c t o r L in ac s 4, 7, 10, 13 G e V 15-GeV Proton Driver for n-Factory Alessandro G. Ruggiero
32-GeV Re-circulator To µSR 2-GeV SCL 12-GeV Re-circulator Muon Acceleration Alessandro G. Ruggiero
One FFAG Period Packing Factor r/R = 70 % B (average) = 1.0 Tesla FODO cells phase advance = 90o DE / turn = 5 MeV Bunch Area = 2 π eV-µs Momentum Spread = ± 2 x 10–3 Norm. Emittance (full) = 1 π mm mrad Alessandro G. Ruggiero
0.2 - 1.2 GeV FFAG Alessandro G. Ruggiero
Cascade of FFAG 200 400 600 800 1,200 MeV Alessandro G. Ruggiero
Applications Alessandro G. Ruggiero
Varying Field B For the same constrain Dr < 100 cm B = 1 Tesla No. of FFAG’s = 4 2 2 4 1 Alessandro G. Ruggiero