200 likes | 216 Views
Elastic properties. Young’s moduli Poisson’s ratios Shear moduli Bulk modulus John Summerscales. Elastic properties. Young’s moduli uniaxial stress/unixaial strain Poisson’s ratio - transverse strain/strain parallel to the load Shear moduli biaxial stress/biaxial strain
E N D
Elastic properties Young’s moduli Poisson’s ratiosShear moduli Bulk modulus John Summerscales
Elastic properties Young’s moduli uniaxial stress/unixaial strain Poisson’s ratio - transverse strain/strain parallel to the load Shear moduli biaxial stress/biaxial strain Bulk modulus triaxial stress (pressure)/triaxial strain
Terminology: ------- as subscripts ------- • single subscript for linear load (e.g. tension) • double subscript for planar load (e.g. shear) • triple subscript for volume (e.g. pressure) transverse Y 2 through-thickness 3 Z X 1 axial, or longitudinal
Stress component notation • first letter in the suffix for planesecond letter for direction of stress • normal stress is positive if outwardi.e. producing tension • shear stress is positive if it hassame sense as corresponding normal stress. • Hooke’s law: σii = Eiii
Young’s modulus (E) stress < carboncomposite < glasscomposite strain • Strain (ε) = elongation (e)/original length (l) • Stiffness = force to produce unit deformation • Stress = force (F)/area (A) • Strength = stress at failure
Young’s moduli (Ei) E = Fl/eA … but E in compositesmay vary with direction 3 principal axes (x, y, z)
Variation of E with angle:fibre orientation distribution factor ηo
Load sharing models • Reuss model: • up to 0.5% strain, equal stressin both the fibres and the matrix. • Voigt model • above 0.5% strain, equal increases in strainin both fibre and matrix.
Variation of E with fibre length:fibre length distribution factor ηl < Tension < Shear • Cox shear-lag • depends on • Gm: matrix modulus • Af: fibre CSA • Ef: fibre modulus • L: fibre length • R: fibre separation • Rf: fibre radius
Variation of E with fibre length:fibre length distribution factor ηl • Cox shear-lag equation: where • critical length:
Poisson’s ratio (isotropic: ν) • = -(strain normal to the applied stress) (strain parallel to the applied stress). • thermodynamic constraintrestricts the values to -1 < < ½for isotropic materials
Poisson’s ratio: beware !! • For orthotropic materials,not all authors use the same notation • subscripts mastimulus* then response • subscripts maresponse then stimulus*stimulus = driving force The following page uses stimulus then response: • 1= fibres • 2 = resin (UD) or fibre (WR) • 3 = resin
Poisson’s ratio (orthotropic: νij) • Maxwell’s reciprocal theorem • ν12E2 = ν21E1 • Lemprière constraintrestricts the values of ν to (1-ν23ν32), (1-ν13ν31), (1-ν12ν21), (1-ν12ν21-ν13ν31-ν23ν32-2ν21ν32ν13) > 0 henceνij ≤ (Ei/Ej)1/2 and ν21ν23ν13 < 1/2.
Poisson’s ratios for GRP • Peter Craig measured νij forC1: 13 layers F&H Y119 unidirectional (UD) rovingsA2: 12 layers TBA ECK25 woven rovings (WR) • confirmed Lemprière criteriawere valid for both materials
Poisson’s ratios for GRP high values low values
Extreme values of νij • Dickerson and Di Martino (1966): • orthotropic (cross-plied) boron/epoxy compositesPoisson's ratios range from 0.024 to 0.878 • ±25º laminate boron/epoxy compositesPoisson's ratios range from -0.414 to 1.97
Shear moduli • Isotropic case • Orthotropic case (Huber’s equation, 1923) Pure Simple
Bulk modulus • Isotropic case • Orthotropic case
Negative Poisson’s ratio (auxetic) materials • Re-entrant or chiral structures
Summary • Young’s moduli • Poisson’s ratios, • including reentrant/chiral auxetics • Shear moduli • Bulk modulus