1 / 26

EECS 20 Lecture 2 (January 19, 2001) Tom Henzinger

Mathematical Language. EECS 20 Lecture 2 (January 19, 2001) Tom Henzinger . Mathematical Language. Let Evens = { x | (  y, y  Nats  x = 2· y ) } . Mathematical Language. Let Evens = { x | (  y, y  Nats  x = 2 · y ) } . Constants. Mathematical Language.

leyna
Download Presentation

EECS 20 Lecture 2 (January 19, 2001) Tom Henzinger

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Mathematical Language EECS 20 Lecture 2 (January 19, 2001) Tom Henzinger

  2. Mathematical Language Let Evens = { x | (  y, y  Nats  x = 2· y ) } .

  3. Mathematical Language Let Evens = { x | (  y, y  Nats x = 2· y ) } . Constants

  4. Mathematical Language Let Evens = { x | (  y, y Nats x = 2· y ) } . Constants Variables

  5. Mathematical Language Let Evens = { x | (  y, y Nats  x = 2· y ) } . Constants Variables Operators

  6. Mathematical Language Let Evens = { x |(  y, y  Nats  x = 2· y )} . Constants Variables Operators Quantifiers

  7. Mathematical Language Let Evens = { x | (  y, y  Nats  x = 2· y ) } . Constants Variables Operators Quantifiers Definition

  8. Mathematical Language LetEvens= { x | (  y, yNatsx=2· y ) } . Constants Variables Operators Quantifiers Definition

  9. Constants have meaning 20 a certain number Berkeley a certain city false a certain truth value

  10. Variables have no meaning x y0 z’

  11. Operators on numbers number + number Result: number number ! number number = number truth value numbernumber truth value

  12. Operators on cities merge ( city, city ) Result: city population-of ( city ) number has-a-university ( city ) truth value

  13. Operators on truth values truth value  truth value Result: truth value truth value  truth value truth value ¬ truth value truth value truth value truth value truth value truth value truth value truth value

  14. Expressions on constants have meaning 3 + 20 Result: 23 (3! + 2) · 4 32 4  population-of ( Berkeley ) true 4 · 20  4 + 20 false true  false false true  ( 4 + 20 ) not well-formed

  15. Implication true  true Result: true true  false false false  true true false  false true

  16. Expressions on variables have no meaning x + 20 (3! + y) · 4 x  y Free variables:x y x, y

  17. Quantifiers remove free variables from expressions x = 0  x, x = 0  x, x = 0  y, x + 1 = y  x,  y, x + 1 = y  x,  y, x  y  x, x + 7 Result: free x true false free x true true not well-formed

  18. Every mathematical expression 1. is not well-formed (“type mismatch”), or 2. contains free variables, or 3. is a definition, or 4. has a meaning (e.g., 20, Berkeley, false).

  19. SETS

  20. Set constants { 1, 2, 3 } { Atlanta, Berkeley, Chicago, Detroit } { 1, 2, 3, 4, … }

  21. Set operator anything  set Result: truth value 2  { 1, 2, 3 } true 2  { Atlanta, Berkeley } false

  22. Set quantifier (  x, truth value ) Result: truth value (  x, truth value ) truth value { x | truth value } set

  23. Quantifiers remove free variables from expressions { x | x  y } { x | x = 1  x = 2 } { x |  y, x = 2· y } { x | x + 7 } Result: free y { 1, 2 } { 2, 4, 6, 8, … } not well-formed

  24. Bounded quantification (  x set, truth value ) Result: truth value (  x set, truth value ) truth value { x set | truth value } set

  25. Meaning of constants can be defined Let Nats = { 1, 2, 3, 4, … } . Let Bools = { true, false } . Define Cities = { Atlanta, Chicago, Berkeley, Detroit } . Define Ø = { } .

  26. Let Evens = { x  Nats |  y  Nats, x = 2· y } . Let Evens be the set of all x  Nats such that x = 2· y for some y  Nats.

More Related