260 likes | 576 Views
A Brief Introduction of Rashba Spin-Orbit Coupling in Quasi-Two-Dimensional Systems. Xiaohan Yao 11 th , JUN. 2018. Origin of Spin-Orbit Coupling Classical Relativistic effect Elementary Models & Tools Quasi-Degenerate Perturbation Theory K-p method & Envelope Function Approximation
E N D
A Brief Introduction ofRashba Spin-Orbit Coupling inQuasi-Two-Dimensional Systems Xiaohan Yao 11th, JUN. 2018
Origin of Spin-Orbit Coupling • Classical • Relativistic effect • Elementary Models & Tools • Quasi-Degenerate Perturbation Theory • K-p method & Envelope Function Approximation • Spin-Splitting at B=0 • Inversion-Asymmetry-Induced Spin-Splitting • Structure & Bulk Inversion-Asymmetric Spin-Orbit Coupling • Rashba & Dresselhaus Spin-Orbit Coupling Content
Origin of Spin-Orbit Coupling (SOC) The Pauli equation emerges as a nonrelativistic approximation from the Dirac equation We obtain the Pauli equation(up to order): Third term: Zeeman term Fourth term: Pauli SOC term
GaAs band gap Conduction band: s-like orbital Valence band: p-like Qualitative sketch of SOC
BIA • Zinc Blende Semiconductor • Quasi-2D System: Heterostructure • SIA • Gate-tunable • Defect • …… Structure & Bulk Inversion Asymmetric (Space)
Dresselhaus SOC at Quasi-2D system BIA Spin-splitting: Zine Blende Structure
Comparison: BIA(Dresselhaus) & SIA(Rashba) Spin orientation of the spin eigenstates in the presence of BIA and SIA spin splitting:
Spin orientation of the spin eigenstates in the presence of BIA and SIA spin splitting: Comparison: BIA(Dresselhaus) & SIA(Rashba) The different symmetries of the Hamiltonians for BIA and SIA, which become visible in the quantity ⟨σ⟩, is also the reason for the anisotropy of the B = 0 spin splitting even in the leading order of k∥ for the case where both BIA and SIA are present.
Need further discussion • RSOC in other systems • Topological insulators • Weyl semimetals • Quasi-1D systems • …… • RSOC related problems • Weak anti-localization • Anomalous Magneto-Oscillations (SdH Oscillations) • Majorana Fermions • …… • Spintronics • Spin-FET • Spin inject & Spin current • ……
J.J. Sakurai: Advanced Quantum Mechanics Winkler, Spin–orbit effects in two dimensional electron and hole systems (Springer-Verlag Berlin, 2003). G. Dresselhaus: Phys. Rev. 100(2), 580–586 (1955) E. I. Rashba, Phys. E. 34, 31 (2006). E. I. Rashba, Phys. Rev. B 68, 241315 (2003). Y.A. Bychkov, E.I. Rashba: J. Phys. C: Solid State Phys. 17, 6039–6045 (1984) S. Datta, B. Das: Appl. Phys. Lett. 56(7), 665–667 (1990) E.O. Kane: “The k · p method”, in Semiconductors and Semimetals, ed. by R.K. Willardson, A.C. Beer, Vol. 1 (Academic Press, New York, 1966), p. 75 R. Winkler: Phys. Rev. B 62, 4245 (2000) J. B. Miller, D. M. Zumbühl, C. M. Marcus, Y. B. Lyanda- Geller, D. Goldhaber-Gordon, K. Campman, and A. C. Gossard, Phys. Rev. Lett. 90, 076807 (2003). M. D’yakonovand V. Perel’, Phys. Lett. A 35, 459 (1971). Reference