1 / 20

In-Situ Habitat and Environmental Monitoring Alan Mainwaring, Joe Polastre and Rob Szewczyk

Explore the potential impact of sensor networks in habitat monitoring, with a focus on design context, applications, and field site requirements for in-situ data collection. Learn about instrumentation in natural spaces, data logging to databases, and real-time sensor node inspection.

lhayward
Download Presentation

In-Situ Habitat and Environmental Monitoring Alan Mainwaring, Joe Polastre and Rob Szewczyk

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. In-Situ Habitat and Environmental Monitoring Alan Mainwaring, Joe Polastre and Rob Szewczyk Intel Research - Berkeley Lablet

  2. Talk Outline • Introduction to habitat monitoring • Field sites and application requirements • Establishing the design context • Summer milestones and wrap-up • Demo: live data from two networks

  3. Introduction • Habitat monitoring represents a class of sensor network applications enormous potential impact for scientific communities and society as a whole. • Instrumentation of natural spaces enables long-term data collection at scales and resolutions that are difficult, if not impossible, to obtain otherwise. • Intimate connection with physical environment allows sensor networks to provide local information that complements macroscopic remote sensing.

  4. Application-Driven Sensor Network Research • Benefits to others • Computer scientists help life scientists • Small steps for us can be revolutionary for others • Provides design context • Eliminates some issues, constrains others • Can add new ones, e.g., packaging • Prioritizes issues • Low-power communication stacks • Run-time systems and VM’s for re-tasking • Health and status monitoring systems • Tools deployment and on-site interaction

  5. Habitat Monitoring • Goal: Remote, in-situ system consisting of • Sensor networks in scientifically interesting areas • WLANs link sensor networks to base station (DB) • Internet link remote users to local resources • Access models • Remote DB, admin, health and status monitoring • Continuous data logger to DB for long-term analysis • Interactive inspection of sensor nodes (near real-time) • Sensors of interest: too many to list • E,g., light, temperature, relative humidity, barometric pressure, infrared, O2, CO2, soil moisture, fluid flow, chemical detection, weight, sound pressure levels, vibration • Need both relative and absolute measurements with units

  6. Field Sites and Application Requirements

  7. James Reserve (CA) Great Duck Island (ME) Habitat Monitoring Field Sites

  8. Application Requirements I • Internet access • 24x7 • 3 to 4 sensor networks (habitats) • network of sensor networks • 128 stationary motes per network • 50% may miss interesting phenomena • 1 year lifetime -- minimum • standalone data-loggers run 1 to 10 years • Change and adaptation may take days • Static node locations, infrequent occlusions • Off-the-grid power: it’s off, it’s big, or it’s solar • Disconnected operation possible at all levels

  9. Application Requirements II • Field re-tasking (local or remote) • Adjust sampling rates, operational parameters, • Remote management (one site visit per year) • 1 person can locate/touch/service all motes in 1 week • Inconspicuous packaging and operation • No bright colors, no sounds (buzzing) or blinking lights • Pack it out: cannot “deploy and forget” • Must find motes in field after year(s) of operation • Can’t leave 1000’s of leaking Li/Cd batteries • Users want predictable system operation • Cannot burden users with more complexity

  10. Sensing Requirements: Weather Board

  11. Some Non-Requirements • Localization • Oftentimes nodes are precisely placed • Data aggregation • Of readings on node (yes), across nodes (no) • Precise time synchronization (yet) • Depends on what precise means… • Instantaneous adaptation to change • Prompt detection but not reaction • Object tracking • Unless it’s passive and over large distances

  12. Establishing the Design Context

  13. Design Context:Power Budget Basics • Batteries • 2xAA 2850 mAhr (est. 75% usable) • daily 5.86 mAhr (365 day target lifetime) • What can the mica do with 5.86 mAhr? • Compute for 46 minutes • Or send 70320 messages • Or take 281000 temp readings

  14. Design Context:Sensing Demands • Sensor frequency bytes/day compressed • Photo 1 min 2800 144 (95%) • I2C temp 15 min 192 192 • Baro/pressure 15 min 192 192 • Baro/temp 15 min 192 192 • %RH 15 min 192 192 • IR thermopile second 172800 8640 (95%) • Thermistor second 172800 8640 (95%) • Totals • 0.04 mAhr for sensing • 349KB/day or ~11600 msgs • 18KB/day or ~600 msgs (compressed)

  15. Design Context: TwoCommunications Budgets • (1) Low-power listening (2) Global scheduling 98% idle 1.17 mAhr 99% idle 1.188 mAhr 1% listen 3.60 mAhr listen time n/a 1% runtime 1.08 mAhr 1% runtime 4.668 mAhr sensing 0.044 mAhr sensing 0.044 mAhr for comm: 1.036 mAhr for comm: 4.624 mAhr • What’s 1 mAhr worth? And 4.6 mAhr? • 12431 msg opportunities 55487 msg opportunities • 1 msg every 7 seconds 1 msg every 1.5 seconds • In 128 node network, In 128 node network, 32 msgs/leaf-node/day 144 msgs/leaf-node/day

  16. Communications Design Challenge • Want network to last 1 year • Want uniform amount of data from motes • Route 18KB from each sensor to DB • 1 mAhr communication budget (low-power listening) • 4 mAhr communication budget (global scheduling) The key design challenge for habitat monitoring with sensor networks is resolving the trade-off between globally-scheduled approaches to communications and alternative approaches based on local information.

  17. Summer Milestones

  18. Summer Milestones • June • Weather sensor board debug and SW • Low-power multi-hop routing for 1% duty cycle • Setup lab network with new sensors and SW (6/27) • July • Upgrade Great Duck Island network (7/8 – 7/12) • Upgrade James Reserve network (7/24 – 7/25) • Monitor data collection, begin evaluation • August • Invited talk: COA board of trustees (8/1) • TR: experiences and initial evaluation (8/25) • NPR segment / National Geographic article (tbd)

  19. Conclusions • Habitat monitoring is broadly representative of a seemingly simple class of sensor network applications. • Reference for benchmarking and comparison • The habitat monitoring application domain makes some systems issues concrete yet leaves others open. • no mobility, 1 year longevity, resource budgets • We can pursue sensor network systems research while delivering significant value to life scientists, today. • what’s trivial to one can be revolutionary to another • We need robust multi-hop routing on spanning trees • You’ve got 1 to 4 mAhr per day to accomplish it

  20. Demo?

More Related