410 likes | 419 Views
Corporate Yield Spreads and Bond Liquidity - Chen et all (2007)<br>How Bond liquidity affect Yield Spread
E N D
Balanced scorecard slide 1 Corporate Yield Spread & Bond Liquidity CHEN, LESMOND and WEI (2007) ZaskiaAyunda PanjiLhoroTegar Rico Rinaldo
Balanced scorecard slide 4 LATAR BELAKANG Penelitian-PenelitianSebelumnya Collin-Dufresneet al. (2001) dan Huang and Huang (2003)mengindikasikanbahwa level maupunperubahandalam yield spreads untuk corp. bonds terhadap Treasury bonds tidakbisadijelaskansepenuhnyaolehpenentutingkatresiko credit(kecukupanmodal, PDB, tingkatpengangguran, tingkatinflasi, utangpemerintahdankrisiskeuangan) dalam structural form model Elton et al, 2001 berpendapat spread nyadipengaruhioleh: 1. loss akibatexpected default, 2. state and local taxes hanyauntuk corporate bonds (tidakuntukgov. bond), 3. Premium yang dimintauntukmenanggungsystemic risk (pengaruhlikuiditas Duffee (1999)mengasumsikanbahwahal-hal lain yang tidakbisadijelaskan(unexplained) yang mempengaruhi yield spread adalahtingkatliquidity. . Longstaff et al (2005) mengusulkanbahwatingkatilliquiditymungkinmerupakanpenjelasanterhadapkegagalan model-model tsb. dalammenjelaskanvariasi yield spread Penelitianinimenilailikuiditasdari bond secara specific melaluicorporate investment grade dan speculative grade bonds sertamenelitihubunganantara bond-specific liquidity estimates dan corporate bond yield spreads.
Balanced scorecard slide 2 LATAR BELAKANG Penelitian-PenelitianSebelumnya Lo, Mamaysky and Wang (2004) Amihud and Mendelson (1986) Lo, Mamaysky, and Wang (2004) :berargumenbahwaliquidity costsmempengaruhi frequency of trading Amihudmenggagasbahwainvestor menginginkan liquidity premium untuk illiquid securities . . • Investor tidakdapatterusmenhedgeresikonya, karenaitu, merekamenginginkanpremium denganmenurunkan security prices. Karenaitulahpada cash flow yang sama, bond yang kurang liquid akanlebihjarangdiperdagangkan, harganyalebihrendahdan yield spreads yang lebihtinggi. Sehingga liquidity diprediksitercerminpada yield spreads. • Penelitianini akanmenggunakan 3 liquidity measures yaitu : • the bid–ask spread • the liquidity proxy of zero returns, dan • liquidity estimator berbasis model variant dariLesmond, Ogden, and Trzcinka (1999).
Balanced scorecard slide 4 LATAR BELAKANG Penelitian-PenelitianSebelumnya Longstaff et al. (2005) menghubungkan corporate bond liquidity dengan yield spreads. Namun, , Longstaff et al. (2005) memfokuskanterhadap 68 issuers yang memiliki data trading untukdefault-Swap sehinggagenerabilitydaripenelitiantsb. diragukan. Ericsson and Renault (2002) mengembangkan theoretical model yang menggunakan new issue dummy sebagai empirical bond-specific liquidity measure. Namun, haltsb. masihtidakdapatmenjelaskancorporate bond liquidity dengan yield spreads (Goodhart and O’Hara (1997)berpendapatkurangnyainformasi yang crediblemengenai spread prices atau bond quotes menjadihambatanutamadalammenganalisislikuiditasdandampakliquidityterhadapayield spreads. Penelitianinimemberikanpenilaian yang lebihkomprehensifpadahubunganantara liquidity dan yield spreads karenamenggunakanbond-specific liquidity measures yang luasuntuklebihdari 4,000 corporate bonds, baikinvestment danspeculative grade categoriesselamaperiode 9 tahun.
LatarBelakang Diantaratigapengukuran yang digunakan, bid–ask spread memangmerupakanpengukuran liquidity costs yang paling banyakdigunakan. Namun, di waktuitu, banyakterdapatpeningkatanpenggunaan percentage of zero returnssebagai proxy likuiditasdalamkasus-kasusempiris. Hal lainnyaadalahpenggunaanpersentase zero return menimbukannoisykarenamerupakankombinasi zero return danpergerakansimultandarifaktor-faktorpenentu bond price. Karenaitu - Dalampenelitianinidigunakanmodel yang dikembangkanolehLesmond et al. (1999) (LOT)untukmemperolehalternated dariestimasilikuditas. - Dasardari LOT model : True value darisebuahbond dipengaruhiolehbanyakfaktor-faktor stochastic, tetapimeasured prices akanmenunjukkan new information hanyajikanilaiinformasidari marginal trader melebihi total liquidity costs. Hal inimengartikanbahwabatasdariliquidity cost untuktiap bond, akanserupadengannilai minimum informasiuntukmelakukan trade. Probability mengobservasi zero return akanlebihtinggidalam liquidity cost threshold (ambang) dibandingkandiluar liquidity cost threshold. Dalampenelitianinidigunakanmaximum likelihood method untukmengestimasirisk factors terkaitdengan market-wide information dan upper and lower liquidity thresholds yang menunjukkan round-trip liquidity costs.
Balanced scorecard slide 4 I. Liquidity Measures A. Discussion Metode bid–ask spreadbanyaksekalidigunakantetapispreadnyatidakselaluavailable.Contohnyaadapadakasus thinly traded bonds (sedikit trade) atau more mature bonds. Bekaert et al. (2003) : menunjukkanbahwa zero returns sendiriadalah reasonable liquidity proxy. Lesmond et al. (1999):memberikan alternative indirect method untukestimasi liquidity berdasarkanmunculnyazero returns. LOT measure adalahestimasilikuiditascomprehensive yang mengandung spread dancost lain yang mungkinmenimpapadainformed trade • Hipothesis: • Marginal trader hanyaakanmelakukantradejika value of the information melebihi marginal costs. • Lesmondet al. (1999): berpendapatjikatrading costscukupbesar zero return days akanmuncullebihsering • LOT estimate adalahpengukuran underlying liquidity costs yang lebihakuratdibanding percentage of zero returns
Balanced scorecard slide 2 I. Liquidity Measures A. Discussion Hal Lain tentang LOT Model Kekurangan LOT Model Zero return sebagailiquidity proxy dan LOT liquidity measure diharapkanberhubungan positive dengan bid–ask spread • Membutuhkanreturn generating model untukbonds yang belumdidefineoleh literature sebelumnya • Membutuhkanbeberapa zero returns untukestimasi liquidity’s effect pada price. • Harganyakemungkinantidakmemperlihatkan zero returns padakasustertentu (bonds barudiissuedatau mid-year bonds) sehinggasehinggaestimasiinvalid Karena strengths dan weaknesses masing-masing, makadigunakanketiganyauntukmenelitihubunganantara corporate bond yield spreads and liquidity. Initidakhanyameningkatkan robustness, namunjugamenunjukkan relative poweruntuktiap liquidity measure.
Balanced scorecard slide 3 I. Liquidity Measures B. The Bid-Ask Spread • Data pada quarterly bid–ask quotes diambildari Bloomberg Terminals. Sebagianbesarhanya available dari 2000 to 2003. • Perhitungan Quarterly proportional bid–ask spread dihitungdengancaraask dikurangi bid dibagihargarata-rata bid danask. • Bond-year’s proportional bid–ask spread dihitungdari rata-rata quarterly proportional spreads : dengandiambil minimum tiaptahunada 1 quarterly quote. • Data untuk quarterly bid–ask quotes diambildari Bloomberg Generic Quote, yang menunjukkan consensus (kesepakatan) quotes antara market participants.
I. Liquidity Measures C. The Percentage Zeros and the LOT Model • LOT measures untuk informed trading hanyamenggunakan return bond harianuntukmengestimasi bond-level liquidity costs. • Efekdarilikuiditasdilihatdariterjadinya zero returns. • Data hargadiambildariDatastreammenggunakan Merrill Linchsebagaisumber data untukharga(hargadinyatakansebagaiharga rata-rata darisemua market makers untuk bond). • Jikaprobability menemukan zero return menurunseiringpeningkatanjumlah market makers, maka jumlah zero returns untuktiap bond issue akanmenjaditerlalurendah. • Karenamodel yang digunakanmendasarkannyapadaharitanpa price changes, makaestimasi bond-specific liquidity costs akanterlalurendah, halinimenjadi bias terhadap liquidity hypothesisnya.
I. Liquidity Measures C. The Percentage Zeros and the LOT Model • Dipilih start date tahun 1995 karena daily pricesnyalebihsering available di • Datastreamhanyasetelah1995 dandilakukanselama 9-year period sampai2003. • Clean price tiap bond digunakansebagai daily basis, Harga yang menyimpanglebihdari 50% from the hargaharisebelumnyadihapus. • Data dibagiberdasarkan bond-years; menggunakan daily data tiap bond tiaptahun, diestimasigabunganantara bond’s return generating function dan liquidity costs padatahuntersebut. Prosedurinidapatmenunjukkantime-series variationspada bond liquidity. • Untukmenilai corporate bonds digunakan two factor model (Lesmond et al, 1999) 2 faktortersebutadalah interest rate dan equity market return, merefleksikanfaktabahwa corporate bond adalah hybrid antara risk free bond dan equity. Semuakoefisienresikodiscaledengandurasiuntukmemperoleh stable estimation coefficients (Jarrow, 1978). • R∗j,t = unobserved “true” bond return for bond j and day t that investors would bid given zero liquidity costs • ΔRft = daily change in the 10-year risk-free interest rate • ΔS&P Index = daily return on the Standard & Poor’s 500 index.
I. Liquidity Measures C. The Percentage Zeros and the LOT Model • Amihudand Mendelson (1986, 1987) mengembangkankerangkadimanaintrinsik value berbedadari observed valuenya. Perbedaaninidisebabkanoleh liquidity premium dimana higher cost asset dihargailebihrendahuntukmengkompensasi liquidity cost. Menggunakan model merekauntuk fixed income securities maka Liquidity effects on bond returns adalah: • Rj,t= measured return, α2 j = effective buy-side cost, danα1,j = effective sell-side cost for bond • Efek liquidity pada bond prices dimodelkandenganmenggabungkan objective function dan liquidity constraint, yaitu : • di mana:
I. Liquidity Measures C. The Percentage Zeros and the LOT Model • log-likelihood function dapatdispesifikasikansbb: • Φi,j = cumulative distribution function for each bond-year evaluated at (αi, j − βj1Duration j,t* ΔRf t − βj2Duration j,t *ΔS&P Indext)/σj . • Σ 1 (region 1) = negative nonzero measured returns, Σ 2 (region 2) = positive nonzero measured returns, danΣ 0 (region 0) = zero measured returns. ProsedurestimasitersebutdijelaskanolehMaddala (1983) danLesmond et al. (1999). • Untukestimasi liquidity difokuskanpadaα2,j and α1,j estimates. Perbedaanestimasi buy-side dan sell-side cost, α2,j − α1,j, menunjukkan round-trip transaction costs.
Balanced scorecard slide 3 I. Liquidity Measures C. The Percentage Zeros and the LOT Model • Diasumsikanbahwahargaakanmerefleksikan costs of trade relatifterhadap information value of the trade. Unanticipated public information, noise trades, atau trades of an idiosyncratic nature tidakakandiperhitungkandalamrational asset pricing frameworkdanhanyamasukpada error term. • Secaraimplisit model yang digunakanmengasumsikaninformasi yang memotivasi tradeuntuk bond daninformasitersebutsecaraefisientercerminpada bond price. Asumsiinididukungolehstudi Hotchkiss and Ronen (2002), yang menyimpulkanbahwaefisiensi informational dari bond price samadengan underlying equity. • Marginal trader diasumsikanmenilai valuedariinformasisebelummemutuskantraderelatifterhadap expected liquidity cost. Marginal trader dengannet differencetertinggiantara value dariinformasidan transaction cost akandapatmengendalikanpergerakanharga.
Balanced scorecard slide 2 I. Liquidity Measures D. Yield Spreads and Corporate Information Hal lain ttgpengambilan Data MetodePengambilan Data Bonds tanpa rating dari S&P atau Fixed Income Securities Database dihapus. DigunakanCompustat Annual Industrial Database untukmengumpulkan firm-level data baik active dan inactive firms untukmengurangi survivorship bias dalam liquidity determinant dan yield spread regressions. • Penelitiandilakukanterhadaplebihdari 4000 bonds. Yield spreads dan bond characteristics diambildariDatastream. Up-to-date credit ratings untuktiap bond diambildari Fixed Income Securities Database, danjikatidakadamakadigunakan Standard and Poor’s rating dariDatastream. Semuavariabeldiambilpadaperiodesetahunsebelum yield spread measurement. Equity volatility diestimasidengan 252 daily returns (dari Center for Research in Security Prices, atau CRSP file) untuk 1 tahunsebelum bond liquidity estimate. Bond volatility diestimasidengan bond prices.
Balanced scorecard slide 8 II. Preliminary Findings A. Summary Statistics Table I : summary statistics yang diklasifikasikanoleh maturity levels dan credit ratings. Tiap panel adaduaset : 1. Bond information untuk matching sample dari zero returns dan LOT estimate, 2. Bond information untuk matching sample dari zero returns, LOT estimate, dan bid–ask spread. Pertama, Liquidity cost lebihtinggiuntuk speculative grade bonds dibanding investment grade bonds. Ada kenaikansignifikanpada zero returns danukuranestimasi LOT dari investment menuju speculative grade bonds, sesuaidengankenaikan bid–ask spread. Yield spreads jugameningkatantar bond categories. Untuk matched sample dari 3 liquidity measures, trend untuktiap liquidity measure terlihatsesuaidengan underlying credit ratingnya. Untuk investment grade bonds, adapeningkatan liquidity costs dari AA bonds ke BBB bonds. Namununtuk speculative grade bonds, trend peningkatan liquidity costs seiringpenurunan credit worthiness hanyamunculpada LOT measure dan the bid–ask spread. Dan persentase zero returns terlihatsebagai proxy yang lemahuntuk liquidity.
Balanced scorecard slide 7 Table I Corporate Bond Summary Statitics
Balanced scorecard slide 7 Table I Corporate Bond Summary Statitics
Balanced scorecard slide 8 II. Preliminary Findings A. Summary Statistics Kedua, liquidity costs meningkatdari short menuju long-maturity bonds, konsistendengan investment horizon argument olehAmihud and Mendelson (1991) atau return volatility arguments olehChakravarty and Sarkar (1999). Secaraumum yield spreads meningkat (menurun) seiringmaturitydari investment (speculative) grade bonds. Merton (1974) menunjukanbahwa corporate yield spreads dapatmeningkatataumenurunseiring maturity, tergantung risk perusahaan. Investment grade issuers menghadapiupward-sloping yield spreads sedangkan speculative grade issuers menghadapi flat atau downward-sloping yield spreads. Helwege and Turner (1999) :menemukanbahwapada speculative credit rating category yang sama, safer firms cenderungmengeluarkan longer-term bonds, yang menyebabkan average yield spread menurunseiring maturity.
II. Preliminary Findings B. Model Validation • Walaupunproporsi zero returns dan LOT estimate keduanyabersumberdaripendapatbahwa liquidity costs menghalangi trade, LOT estimate lebihsedkitmenimbulkan noisy karenamenggabungkancovariationantara zero returns movement dari bond price determinants. • Untukmemverifikasimodel ini, dilakukan model specification check denganmenginvestigasiapakah LOT model membantumerecover intuitive beta coefficients pada systematic risk factors. Lalu coefficients inidibandingkandengan naive asset pricing model tanpa liquidity cost considerations. Jikamodelnya specified akanadabeberapapola yang munculyaitu 1. interest rate coefficientnya negative. Namunhubungannyaakanmelemahdari high-grade ke low-grade bonds (Schultz (2001)). 2. equity return coefficientnya positive untuklowgrade bonds (Cornell and Green (1991)). • Positifequity return menunjukkan improvement dalam business operation perusahaan, sehinggaakanmemiliki positive effect pada bond return. • Namun, effect dari equity return pada high grade bonds tidakterlalu clear.
Balanced scorecard slide 7 Table II Liquidity Measure Test
Balanced scorecard slide 7 Table II Liquidity Measure Test
II. Preliminary Findings B. Model Validation • Hasilestimasiadapada Panel A Table II. Perbandinganhasil LOT dengan naive OLS model menunjukkanpengaruh zero returns padahasil estimation. Estimasi LOT model’s interest rate sebagianbesar negative dansignifikan, sedangkanpengaruh interest rate menurunseiringpenurunan bond ratings, sesuaidenganperkiraan. • Kontrasnyanaive OLS model memberikan interest rate estimates yang tidaksignifikan. Interest rate effect tidakmemiliki trend dengan bond ratings, berlawanandengan common beliefs. • Hilangnyapengaruh interest rate pada LOT model dioffsetdenganpeningkatanpengaruh S&P 500 equity return, khususnyauntuk speculative grade bonds. • Koefisienuntuk S&P 500 dari investment grade ke speculative grade bonds terlihatberbedatandanya. Menunjukkanbahwaterjadi signaling effects pada speculative grade bonds dan substitution effects pada investment grade bonds. Pola yang hampirsamajugaterlihatpada naive OLS model’s.
Balanced scorecard slide 3 II. Preliminary Findings C. Bid-Ask Spread Tests • Dilakukanuntukmengujikonsistensiketigapengukuran liquidity tersebut. Yaitudenganmeregress bid ask spread secaraterpisahpada 2 liquidity measures denganmengontrol liquidity determinants yang lain : • it = bond iand year t. liquidity = proportion of zero returns atau LOT estimate. Liquidity determinants dipilihberdasarkanstudiGarbade and Silber (1979), Sarig and Warga (1989), Chakravarty and Sarkar (1999), Stoll (2000), Schultz (2001), dan Brandt and Kavajecz (2004). Bond Rating = proxy untuk default risk. Untuk overall regressions, bond ratings menggunakan cardinal scale dari 1 (AAA rated bonds) sampai 7 (CCC to D rated bonds). Hasiladapada panel B Table II.
Balanced scorecard slide 3 II. Preliminary Findings C. Bid-Ask Spread Tests • Untukinvestment grade bonds, LOT liquidity estimate dapatmenjelaskan 6.39% darivariasi cross-sectional pada bid–ask spread, zero returns = 6.82%. • Sebagai perbandingan, Schultz (2001) memperolehR2 = 3.43% untukregresisemua microstructure trading cost determinants pada investment grade bonds. Baik LOT estimate dan percentage of zero returns tetappositifsignifikanterhadap bid–ask spread saatvariabel lain dimasukkan. • Hasilyang samadiperolehpada speculative bonds, namunhanyauntuk LOT model estimate. Proporsi zero return hanyasignifikansetelahmemasukkan control variables. • Persentasezero returns mengalami specification error bias lebihbanyakdibandingkan LOT measure. Alasannyakarena LOT measure dapatmengekstraklebihbanyakinformasidibandingkan zero returns.
Balanced scorecard slide 3 II. Preliminary Findings D. Initial Yield Spread and Liquidity Test • Mengujihubunganantara yield spread ketigapengukuran liquidity. Untukmemberikanperbandingan yang konsisten, bid–ask spread sample dipasangkandenganketigapengukuran liquidity. • Panel C Table II : untuk investment grade bonds semuanyapositifsignifikandengan yield spread. LOT measure dan bid–ask spread memberikan power yang hampirsamadalammenjelaskan cross-sectional variation dalam yield spread, denganR2 = 7.3%. Sedangkanpersentase zero returns menjelaskan 6% dari cross-sectional variation dalam yield spread. • Untukspeculative bonds, hanya bid–ask spread dan LOT measure berpengaruhsignifikanterhadap yield spread. LOT measure menjelaskan 7.39% dari cross-sectional variation dalam yield spread. Sedangkan bid–ask spread hanya 0.86%.
Balanced scorecard slide 3 III. Liquidity Effects on Yield Spread Levels • Many theoretical models predict that investors demand higher expected returns for less liquid assets to compensate less liquidity risk • For the same cash flow in the future, less liquid assets will have lower prices • Bond yield is a promised yield given known cash flows, so lower prices of less liquid bonds lead to higher bonds yields & higher yields spread • Regression tests of liquidity estimates & other yield spread determinants • Table III as the result • Significant at 1% for all liquidity variable
Balanced scorecard slide 7 Table III
Balanced scorecard slide 7 Table III Cont.
Balanced scorecard slide 3 III. Liquidity Effects on Yield Spread Levels • Issuer fixed-effects regressions • Issuer fixed effect regression to control for issuer influences on yields ( domination of small set companies) • The same consistent results using bid-ask spread or LOT • Significant result at 1% if firm-level variables not included • In overall: same result but zero returns slightly weaker
Balanced scorecard slide 7 Table IV
Balanced scorecard slide 7 Table IV Cont.
Balanced scorecard slide 3 III. Liquidity Effects on Yield Spread Levels • Simultaneous equation model tests • Hypothesize that asymmetric information in its credit quality is the main reason for adverse selection costs • Estimated using two stage least square • Table V shows the result • LOT & bid-ask spread significant for investment grade bonds (1%) and speculative grade bonds (5%) • Zero returns significant for investment grade bonds (5%) and insignificant for speculative grade bonds • Negative coefficient indicates falls on credit quality • Tax effects (coupon) & volatility are insignificant • Equations for simultaneous model tests :
Balanced scorecard slide 7 Table V
Balanced scorecard slide 7 Table V Cont.
Balanced scorecard slide 7 Table V Cont.
Balanced scorecard slide 3 IV. Liquidity Effects on Yield Spread Changes • Regression tests of changes in liquidity and yield spread determinants • Cross section model • The results for table VI • Liquidity change variable is significant • LOT & bid-ask spread consistent with table III • Changes in bid-ask spread relatively lower explanatory power for both categories of bonds • Equations for changes in liquidity
Balanced scorecard slide 7 Table VI
Balanced scorecard slide 3 IV. Liquidity Effects on Yield Spread Changes • Simultaneous equation model tests • Using two stage least square • Table VII shows the result • Bid-ask spread & LOT increase in liquidity costs (positively significant) for both investment grade & speculative bonds • Zero returns increase in liquidity costs (significant) for investment grade bonds, not for speculative bonds • Changes in liquidity robust to potential endogeneity bias • Equation for simultaneous model tests :
Balanced scorecard slide 7 Table VII
Balanced scorecard slide 8 V. Conclusions • This paper examine the association between corporate bond liquidity & yield spread • Adopt two model of liquidity measure (bid-ask & proportion of zero returns) and liquidity estimates • Strongly associated in liquidity measure, with Lesmond model • Liquidity is key determinant in yield spread • Both of invesment grade & speculative grade bonds exhibit liquidity effects • Paper contributions • The growing debate over liquidity’s influence on asset pricing & corporate finance decision • The issue of a liquidity premium on returns • Further research • The evidence of a liquidity effect on corporate yield spreads may shed light on sovereign debt yield spread determinants
Balanced scorecard slide 10 THANK YOU ZaskiaAyunda PanjiLhoroTegar Rico Rinaldo