370 likes | 748 Views
Large Mesh Deformation Using the Volumetric Graph Laplacian. Kun Zhou Jin Huang* John Snyder ^ Xinguo Liu Hujun Bao* Baining Guo Heung-Yeung Shum Microsoft Research Asia *Zhejiang University ^Microsoft Research. Mesh Deformation. Smooth geometry
E N D
Large Mesh Deformation Using theVolumetric Graph Laplacian Kun Zhou Jin Huang* John Snyder^ Xinguo LiuHujun Bao* Baining Guo Heung-Yeung ShumMicrosoft Research Asia *Zhejiang University^Microsoft Research
Mesh Deformation • Smooth geometry • Freeform deformation [Barr84, Singh98, Bendels03] • Energy minimization [Welch94, Taubin95, Botsch04] • Detailed geometry • Multi-resolution editing [Zorin97, Kobbelt98, Guskov99] • Differential domain methods: • Poisson mesh editing [Yu04] • Laplacian surface editing [Sorkine04, Lipman05]
Large Mesh Deformation • Challenge to existing techniques • Local self-intersection, unnatural volume change Bending Twisting
Large Mesh Deformation • Challenge to existing techniques • Local self-intersection, unnatural volume change Poisson Mesh Editing VGL
Large Mesh Deformation • Challenge to existing techniques • Local self-intersection, unnatural volume change Poisson Mesh Editing VGL
Large Deformation: Why Difficult? • Differential domain methods [Yu04,Sorkine04] Uniform error distribution using least-squares optimization Only surface details, volume ignored • Displacement volumes [Botsch03] Volumetric constraints Iterative relaxation produces artifacts Solution: Volumetric Constraints & Least-Squares Optimization
F F’ Poisson Mesh Editing Step 1: Specify control curve Step 2: Edit control curve
Poisson Mesh Editing Step 3: Propagate local frame transformations Step 4: Solve Poisson equation
Quadric Energy Function Surface Details Position Constraints Volumetric Details
Deformation Using VGL • Construct the volumetric graph • Compute Laplacian coordinates • Compute and apply local transformation • Solve the sparse linear system
Volumetric Graph Construction • Construct an inner shell
Volumetric Graph Construction • Embed both the mesh and shell in a lattice
Volumetric Graph Construction • Build edge connections
Volumetric Graph Construction • Simplify and smooth the graph Not Tetrahedral Mesh
Deformation Comparison Laplacian surface [Sorkine04] Poisson mesh [Yu04] VGL
Deformation Comparison Poisson mesh [Yu04] Laplacian surface [Sorkine04] VGL
Deformation Comparison Original model Poisson mesh VGL
Deformation Interface • 3D space manipulation [Yu04] • Tedious and require artistic skill • 2D sketch-based interface • Modeling: Teddy[Igarashi99] • Editing: [Zelinka04, Kho05, Nealen05] “Teddy-like” deformation: intuitive and easy to use
Conclusion • Volumetric graph Laplacian (VGL) • Volumetric constraints • Least squares minimization • No tetrahedral mesh construction • 2D sketch-based deformation system • “Teddy-like” deformation system • Cartoon deformation retargeting
Future Work • Anchor-based deformation • Dynamic connectivity • Automatic contour tracking
Acknowledgement • Cartoons from Disney Feature Animation and Dongyu Cao • 3D models from Stanford, MIT, Cyberware • Xin Sun, Jianwei Han • Steve Lin, Bo Zhang • NSFC and 973 Program of China