1 / 27

The Search Engine Architecture

The Search Engine Architecture. CSCI 572: Information Retrieval and Search Engines Summer 2010. Outline. Introduction Google The PageRank algorithm The Google Architecture Architectural components Architectural interconnections Architectural data structures Evaluation of Google

licia
Download Presentation

The Search Engine Architecture

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. The Search Engine Architecture CSCI 572: Information Retrieval and Search Engines Summer 2010

  2. Outline • Introduction • Google • The PageRank algorithm • The Google Architecture • Architectural components • Architectural interconnections • Architectural data structures • Evaluation of Google • Summary

  3. Problems with search engines circa the last decade • Human maintenance • Subjective • Example: Ranking hits based on $$$ • Automated search engines • Quality of result • Neglect to take user’s context into account • Searching process • High quality results aren’t always at the top of the list

  4. The Typical Search Engine Process In what stages is the most time spent?

  5. How to scale to modern times? • Currently • Efficient index • Petabyte scale storage space • Efficient Crawling • Cost effectiveness of hardware • Future • Qualitative context • Maintaining localization data • Perhaps send indexing to clients • Client computers help gather Google’s index in a distributed, decentralized fashion?

  6. Google • The whole idea is to keep up with the growth of the web • Design Goals:-Remove Junk Results-Scalable document indices • Use of link structure to improve quality filtering • Use as an academic digital library • Provide search engine datasets • Search engine infrastructure and evolution

  7. Google • Archival of information • Use of compression • Efficient data structures • Proprietary file system • Leverage of usage data • PageRank algorithm • Sort of a “lineage” of a source of information • Citation graph

  8. PageRank Algorithm • Numerical method to calculate page’s importance • this approach might well be followed by people doing research • Page Rank of a page A • With damping factor d • Where PR(x) = Page Rank of page X • Where C(x) = the amount of outgoing links from page x • Where T1…Tn is the set of pages with incoming links to page A • PR(A)=(1-d)+d(PR(T1)/C(T1)+…+PR(Tn)/C(Tn)) • It’s actually a bit more complicated than it first looks • For instance, what’s PR(T1) and PR(T2) and so on?

  9. PageRank Algorithm • An excellent explanation • http://www.iprcom.com/papers/pagerank/ • Since the PR(A) equation is a probability distribution over all web pages linking to web page A… • And because of the (1-d) term and the d*(PR….) term • The PageRanks of all the web pages on the web will sum to 1

  10. PageRank: Example • So, where do you start? • It turns out that you caneffectively “guess” whatthe PageRanks for the webpages are initially • In our example, guess 0 for all ofthe pages • Then you run the PR function to calculate PR for all the web pages iteratively • You do this until… • The page ranks for each web page stop changing in each iteration • They “settle down”

  11. PageRank: Example Below is the iterative calculation that we would run PR(a) = 1 - $damp + $damp * PR(c); PR(b) = 1 - $damp + $damp * (PR(a)/2) PR(c) = 1 - $damp + $damp * (PR(a)/2 + PR(b) + PR(d)); PR(d) = 1 - $damp;

  12. Still changing too much PageRank Algorithm: First 18 iterations a: 0.00000 b: 0.00000 c: 0.00000 d: 0.00000 a: 0.15000 b: 0.21375 c: 0.39544 d: 0.15000 a: 0.48612 b: 0.35660 c: 0.78721 d: 0.15000 a: 0.81913 b: 0.49813 c: 1.04904 d: 0.15000 a: 1.04169 b: 0.59272 c: 1.22403 d: 0.15000 a: 1.19042 b: 0.65593 c: 1.34097 d: 0.15000 a: 1.28982 b: 0.69818 c: 1.41912 d: 0.15000 a: 1.35626 b: 0.72641 c: 1.47136 d: 0.15000 a: 1.40065 b: 0.74528 c: 1.50626 d: 0.15000 a: 1.43032 b: 0.75789 c: 1.52959 d: 0.15000 a: 1.45015 b: 0.76632 c: 1.54518 d: 0.15000 a: 1.46341 b: 0.77195 c: 1.55560 d: 0.15000 a: 1.47226 b: 0.77571 c: 1.56257 d: 0.15000 a: 1.47818 b: 0.77823 c: 1.56722 d: 0.15000 a: 1.48214 b: 0.77991 c: 1.57033 d: 0.15000 a: 1.48478 b: 0.78103 c: 1.57241 d: 0.15000 a: 1.48655 b: 0.78178 c: 1.57380 d: 0.15000 a: 1.48773 b: 0.78228 c: 1.57473 d: 0.15000

  13. Starting to stabilize PageRank: next 13 iterations a: 1.48852 b: 0.78262 c: 1.57535 d: 0.15000 a: 1.48904 b: 0.78284 c: 1.57576 d: 0.15000 a: 1.48940 b: 0.78299 c: 1.57604 d: 0.15000 a: 1.48963 b: 0.78309 c: 1.57622 d: 0.15000 a: 1.48979 b: 0.78316 c: 1.57635 d: 0.15000 a: 1.48990 b: 0.78321 c: 1.57643 d: 0.15000 a: 1.48997 b: 0.78324 c: 1.57649 d: 0.15000 a: 1.49001 b: 0.78326 c: 1.57652 d: 0.15000 a: 1.49004 b: 0.78327 c: 1.57655 d: 0.15000 a: 1.49007 b: 0.78328 c: 1.57656 d: 0.15000 a: 1.49008 b: 0.78328 c: 1.57657 d: 0.15000 a: 1.49009 b: 0.78329 c: 1.57658 d: 0.15000 a: 1.49009 b: 0.78329 c: 1.57659 d: 0.15000

  14. Stabilized PageRank: Last 9 iterations a: 1.49010 b: 0.78329 c: 1.57659 d: 0.15000 a: 1.49010 b: 0.78329 c: 1.57659 d: 0.15000 a: 1.49010 b: 0.78329 c: 1.57659 d: 0.15000 a: 1.49010 b: 0.78329 c: 1.57659 d: 0.15000 a: 1.49011 b: 0.78329 c: 1.57660 d: 0.15000 a: 1.49011 b: 0.78330 c: 1.57660 d: 0.15000 a: 1.49011 b: 0.78330 c: 1.57660 d: 0.15000 a: 1.49011 b: 0.78330 c: 1.57660 d: 0.15000 a: 1.49011 b: 0.78330 c: 1.57660 d: 0.15000 Average pagerank = 1.0000

  15. Google Architecture • Key components • Interconnections • Data structures • A referencearchitecture forsearch engines?

  16. Google Data Components • BigFiles • Repository • Use zlib to compress • Lexicon • Word base • Hit Lists • Word->document ID map • Document Indexing • Forward Index • Inverted Index

  17. Google File System (GFS) • BigFiles • A.k.a. Google’s Proprietary Filesystem • 64-bit addressable • Compression • Conventional operating systems don’t suffice • No explanation of why? • GFS: http://labs.google.com/papers/gfs.html

  18. Google Key Data Components • Repository • Stores full text of web pages • Use zlib to compress • Zlib less efficient than bzip • Tradeoff of time complexity versus space efficiency • Bzip more space efficient, but slower • Why is it important to compress the pages?

  19. Google Lexicon • Lexicon • Contains 14 million words • Implemented as a hash table of pointers to words • Full explanation beyond the scope of this discussion • Why is it important to have a lexicon? • Tokenization • Analysis • Language Identification • SPAM

  20. Mapping queries to hits • HitLists • wordID->(docID,position,font,capitalization) mapping • Takes up most of the space in the forward and inverted indices • Types:Fancy,Plain,Anchor

  21. Document Indexing • Document Indexing • Forward Index • docIDs->wordIDs • Partially sorted • Duplicated doc IDs • Makes it easier for final indexing and coding • Inverted Index • wordIDs->docIDs • 2 sets of inverted barrels

  22. Crawling and Indexing • Crawling • Distributed, Parallel • Social issues • Bringing down web servers: politeness • Copyright issues • Text versus code • Indexing • Developed their own web page parser • Barrels • Distribution of compressed documents • Sorting

  23. Google’s Query Evaluation • 1: Parse the query • 2: Convert words into WordIDs • Using Lexicon • 3: Select the barrels that contain documents which match the WordIDs • 4: Search through documents in the selected barrels until one is discovered that matches all the search terms • 5: Compute that document’s rank (using PageRank as one of the components) • 6: Repeat step 4 until no documents are found and we’ve went through all the barrels • 7: Sort the set of returned documents by document rank and return the top k documents

  24. Google Evaluation • Performed by generating numerical results • Query satisfaction • Bill Clinton Example • Storage requirements • 55GB Total • System Performance • 9 days to download 26 million pages • 63 hours to get the final 11 million (at the time) • Search Performance • Between 1 and 10 seconds for most queries (at the time)

  25. Wrapup • Loads of future work • Even at that time, there were issues of: • Information extraction from semi-structured sources (such as web pages) • Still an active area of research • Search engines as a digital library • What services, APIs and toolkits should a search engine provide? • What storage methods are the most efficient? • From 2005 to 2010 to ??? • Enhancing metadata • Automatic markup and generation • What are the appropriate fields? • Automatic Concept Extraction • Present the Searcher with a context • Searching languages: beyond context-free queries • Other types of search: Facet, GIS, etc.

  26. The Future? • User poses keyword query search • “Google-like” result page comes back • Along with each link returned, there will be • A “Concept Map” outlining – using extraction methods – what the “real” content of the document is • This basically allows you to “visually” see what the page rank is • Discover information visually • Existing evidence that this works well • http://vivisimo.com/ • Carrot2/3 clustering

  27. Science Data Systems Software Architecture Data Grid Data Publications Software Chris’s Homepage http://sunset.usc.edu/~mattmann Concept Map

More Related