270 likes | 493 Views
The Search Engine Architecture. CSCI 572: Information Retrieval and Search Engines Summer 2010. Outline. Introduction Google The PageRank algorithm The Google Architecture Architectural components Architectural interconnections Architectural data structures Evaluation of Google
E N D
The Search Engine Architecture CSCI 572: Information Retrieval and Search Engines Summer 2010
Outline • Introduction • Google • The PageRank algorithm • The Google Architecture • Architectural components • Architectural interconnections • Architectural data structures • Evaluation of Google • Summary
Problems with search engines circa the last decade • Human maintenance • Subjective • Example: Ranking hits based on $$$ • Automated search engines • Quality of result • Neglect to take user’s context into account • Searching process • High quality results aren’t always at the top of the list
The Typical Search Engine Process In what stages is the most time spent?
How to scale to modern times? • Currently • Efficient index • Petabyte scale storage space • Efficient Crawling • Cost effectiveness of hardware • Future • Qualitative context • Maintaining localization data • Perhaps send indexing to clients • Client computers help gather Google’s index in a distributed, decentralized fashion?
Google • The whole idea is to keep up with the growth of the web • Design Goals:-Remove Junk Results-Scalable document indices • Use of link structure to improve quality filtering • Use as an academic digital library • Provide search engine datasets • Search engine infrastructure and evolution
Google • Archival of information • Use of compression • Efficient data structures • Proprietary file system • Leverage of usage data • PageRank algorithm • Sort of a “lineage” of a source of information • Citation graph
PageRank Algorithm • Numerical method to calculate page’s importance • this approach might well be followed by people doing research • Page Rank of a page A • With damping factor d • Where PR(x) = Page Rank of page X • Where C(x) = the amount of outgoing links from page x • Where T1…Tn is the set of pages with incoming links to page A • PR(A)=(1-d)+d(PR(T1)/C(T1)+…+PR(Tn)/C(Tn)) • It’s actually a bit more complicated than it first looks • For instance, what’s PR(T1) and PR(T2) and so on?
PageRank Algorithm • An excellent explanation • http://www.iprcom.com/papers/pagerank/ • Since the PR(A) equation is a probability distribution over all web pages linking to web page A… • And because of the (1-d) term and the d*(PR….) term • The PageRanks of all the web pages on the web will sum to 1
PageRank: Example • So, where do you start? • It turns out that you caneffectively “guess” whatthe PageRanks for the webpages are initially • In our example, guess 0 for all ofthe pages • Then you run the PR function to calculate PR for all the web pages iteratively • You do this until… • The page ranks for each web page stop changing in each iteration • They “settle down”
PageRank: Example Below is the iterative calculation that we would run PR(a) = 1 - $damp + $damp * PR(c); PR(b) = 1 - $damp + $damp * (PR(a)/2) PR(c) = 1 - $damp + $damp * (PR(a)/2 + PR(b) + PR(d)); PR(d) = 1 - $damp;
Still changing too much PageRank Algorithm: First 18 iterations a: 0.00000 b: 0.00000 c: 0.00000 d: 0.00000 a: 0.15000 b: 0.21375 c: 0.39544 d: 0.15000 a: 0.48612 b: 0.35660 c: 0.78721 d: 0.15000 a: 0.81913 b: 0.49813 c: 1.04904 d: 0.15000 a: 1.04169 b: 0.59272 c: 1.22403 d: 0.15000 a: 1.19042 b: 0.65593 c: 1.34097 d: 0.15000 a: 1.28982 b: 0.69818 c: 1.41912 d: 0.15000 a: 1.35626 b: 0.72641 c: 1.47136 d: 0.15000 a: 1.40065 b: 0.74528 c: 1.50626 d: 0.15000 a: 1.43032 b: 0.75789 c: 1.52959 d: 0.15000 a: 1.45015 b: 0.76632 c: 1.54518 d: 0.15000 a: 1.46341 b: 0.77195 c: 1.55560 d: 0.15000 a: 1.47226 b: 0.77571 c: 1.56257 d: 0.15000 a: 1.47818 b: 0.77823 c: 1.56722 d: 0.15000 a: 1.48214 b: 0.77991 c: 1.57033 d: 0.15000 a: 1.48478 b: 0.78103 c: 1.57241 d: 0.15000 a: 1.48655 b: 0.78178 c: 1.57380 d: 0.15000 a: 1.48773 b: 0.78228 c: 1.57473 d: 0.15000
Starting to stabilize PageRank: next 13 iterations a: 1.48852 b: 0.78262 c: 1.57535 d: 0.15000 a: 1.48904 b: 0.78284 c: 1.57576 d: 0.15000 a: 1.48940 b: 0.78299 c: 1.57604 d: 0.15000 a: 1.48963 b: 0.78309 c: 1.57622 d: 0.15000 a: 1.48979 b: 0.78316 c: 1.57635 d: 0.15000 a: 1.48990 b: 0.78321 c: 1.57643 d: 0.15000 a: 1.48997 b: 0.78324 c: 1.57649 d: 0.15000 a: 1.49001 b: 0.78326 c: 1.57652 d: 0.15000 a: 1.49004 b: 0.78327 c: 1.57655 d: 0.15000 a: 1.49007 b: 0.78328 c: 1.57656 d: 0.15000 a: 1.49008 b: 0.78328 c: 1.57657 d: 0.15000 a: 1.49009 b: 0.78329 c: 1.57658 d: 0.15000 a: 1.49009 b: 0.78329 c: 1.57659 d: 0.15000
Stabilized PageRank: Last 9 iterations a: 1.49010 b: 0.78329 c: 1.57659 d: 0.15000 a: 1.49010 b: 0.78329 c: 1.57659 d: 0.15000 a: 1.49010 b: 0.78329 c: 1.57659 d: 0.15000 a: 1.49010 b: 0.78329 c: 1.57659 d: 0.15000 a: 1.49011 b: 0.78329 c: 1.57660 d: 0.15000 a: 1.49011 b: 0.78330 c: 1.57660 d: 0.15000 a: 1.49011 b: 0.78330 c: 1.57660 d: 0.15000 a: 1.49011 b: 0.78330 c: 1.57660 d: 0.15000 a: 1.49011 b: 0.78330 c: 1.57660 d: 0.15000 Average pagerank = 1.0000
Google Architecture • Key components • Interconnections • Data structures • A referencearchitecture forsearch engines?
Google Data Components • BigFiles • Repository • Use zlib to compress • Lexicon • Word base • Hit Lists • Word->document ID map • Document Indexing • Forward Index • Inverted Index
Google File System (GFS) • BigFiles • A.k.a. Google’s Proprietary Filesystem • 64-bit addressable • Compression • Conventional operating systems don’t suffice • No explanation of why? • GFS: http://labs.google.com/papers/gfs.html
Google Key Data Components • Repository • Stores full text of web pages • Use zlib to compress • Zlib less efficient than bzip • Tradeoff of time complexity versus space efficiency • Bzip more space efficient, but slower • Why is it important to compress the pages?
Google Lexicon • Lexicon • Contains 14 million words • Implemented as a hash table of pointers to words • Full explanation beyond the scope of this discussion • Why is it important to have a lexicon? • Tokenization • Analysis • Language Identification • SPAM
Mapping queries to hits • HitLists • wordID->(docID,position,font,capitalization) mapping • Takes up most of the space in the forward and inverted indices • Types:Fancy,Plain,Anchor
Document Indexing • Document Indexing • Forward Index • docIDs->wordIDs • Partially sorted • Duplicated doc IDs • Makes it easier for final indexing and coding • Inverted Index • wordIDs->docIDs • 2 sets of inverted barrels
Crawling and Indexing • Crawling • Distributed, Parallel • Social issues • Bringing down web servers: politeness • Copyright issues • Text versus code • Indexing • Developed their own web page parser • Barrels • Distribution of compressed documents • Sorting
Google’s Query Evaluation • 1: Parse the query • 2: Convert words into WordIDs • Using Lexicon • 3: Select the barrels that contain documents which match the WordIDs • 4: Search through documents in the selected barrels until one is discovered that matches all the search terms • 5: Compute that document’s rank (using PageRank as one of the components) • 6: Repeat step 4 until no documents are found and we’ve went through all the barrels • 7: Sort the set of returned documents by document rank and return the top k documents
Google Evaluation • Performed by generating numerical results • Query satisfaction • Bill Clinton Example • Storage requirements • 55GB Total • System Performance • 9 days to download 26 million pages • 63 hours to get the final 11 million (at the time) • Search Performance • Between 1 and 10 seconds for most queries (at the time)
Wrapup • Loads of future work • Even at that time, there were issues of: • Information extraction from semi-structured sources (such as web pages) • Still an active area of research • Search engines as a digital library • What services, APIs and toolkits should a search engine provide? • What storage methods are the most efficient? • From 2005 to 2010 to ??? • Enhancing metadata • Automatic markup and generation • What are the appropriate fields? • Automatic Concept Extraction • Present the Searcher with a context • Searching languages: beyond context-free queries • Other types of search: Facet, GIS, etc.
The Future? • User poses keyword query search • “Google-like” result page comes back • Along with each link returned, there will be • A “Concept Map” outlining – using extraction methods – what the “real” content of the document is • This basically allows you to “visually” see what the page rank is • Discover information visually • Existing evidence that this works well • http://vivisimo.com/ • Carrot2/3 clustering
Science Data Systems Software Architecture Data Grid Data Publications Software Chris’s Homepage http://sunset.usc.edu/~mattmann Concept Map