1 / 33

Simulating the Production of Ethanol

Simulating the Production of Ethanol. Student Name 1 Student Name 2 Student Name 3. Overview. Introduction to Production Simulation Results Conclusion. Ethanol Production. Fermenter. Fermentation Reaction. Zymase. 2. +. + Heat. Glucose. Ethanol. Carbon Dioxide. Chemical Equation.

lida
Download Presentation

Simulating the Production of Ethanol

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Simulating the Production of Ethanol Student Name 1 Student Name 2 Student Name 3

  2. Overview • Introduction to Production • Simulation • Results • Conclusion

  3. Ethanol Production Fermenter

  4. Fermentation Reaction

  5. Zymase 2 + + Heat Glucose Ethanol Carbon Dioxide Chemical Equation

  6. Developing the System • Based on Mass Balances • And Energy Balance

  7. Temperature Dependency • Reaction Rate • Heat

  8. Constant Values

  9. CO2 CGin, CEin, Tin, Fin Yeast CG, CE, T, F Q V, ρ, CP Reactor

  10. Methods of Solution • MATLAB • Simulink • Laplace Transform using Maple

  11. MATLAB Code: Steady State %steady state function conc=ustank(t,solution) global Tin V Fin Fout CEin Cgin B rho Cp T=solution(1); Cg=solution(2); CE=solution(3); rate=Cg*10^3*exp(-50/T) Cgin=150 conc(1,1)=(Tin*Fin*Cp*rho-T*Fout*rho*Cp+B*rate)/(V*rho*Cp); conc(2,1)=(Cgin*Fin-Cg*Fout-(rate))/V; conc(3,1)=(CEin*Fin-CE*Fout+0.5*rate)/V;

  12. Linear Approximations • Taylor Series Expansion • Approximate Methods:

  13. Simulink: Steady State

  14. Laplace Transform E’(t) = -0.57e-1*exp(-0.14e-2*t)*cos(0.39e-4*t) +0.22e-1*exp(-0.14e-2*t)*sin(0.39e-4*t) -0.17e-55*I*(-0.6329721079e54*exp(-0.14e-2*t)*cos(0.39e-4*t) -0.16e55*exp(-0.14e-2*t)*sin(0.39e-4*t)) -0.1742706769e-55*I*(0.63e54*exp(-0.14e-2*t)*cos(0.39e-4*t) +0.16e55*exp(-0.14e-2*t)*sin(0.39e-4*t)) +0.36e-1*exp(-0.90e-3*t)*cos(0.82e-4*t) +0.14e-1*exp(-0.90e-3*t)*sin(0.82e-4*t) -0.17e-55*I*(-0.39e54*exp(-0.90e-3*t)*cos(0.82e-4*t) +0.10e55*exp(-0.90e-3*t)*sin(0.82e-4*t)) -0.17e-55*I*(0.39e54*exp(-0.90e-3*t)*cos(0.82e-4*t) -0.10e55*exp(-0.90e-3*t)*sin(0.82e-4*t)) +0.19e-1*exp(-0.75e-3*t) +0.14e-2*exp(-0.71e-3*t)

  15. Step Change • Steady state achieved • Double concentration of glucose

  16. MATLAB Code: Step Change %unit step changefunction conc=ustank(t,solution)global Tin V Fin Fout CEin Cgin B rho CpT=solution(1);Cg=solution(2);CE=solution(3);rate=Cg*10^3*exp(-50/T) if(t>1000)Cgin=300;else Cgin=150;end conc(1,1)=(Tin*Fin*Cp*rho-T*Fout*rho*Cp+B*rate)/(V*rho*Cp);conc(2,1)=(Cgin*Fin-Cg*Fout-(rate))/V; conc(3,1)=(CEin*Fin-CE*Fout+0.5*rate)/V;

  17. Simulink: Step Change

  18. Laplace Transform E’(t) = 28+4*exp(-0.14e-2*t)*cos(0.39e-4*t) -17*exp(-0.14e-2*t)*sin(0.39e-4*t) +0.12e-63*I*(-0.74e65*exp(-0.14e-2*t)*cos(0.39e-4*t) -0.18e66*exp(-0.14e-2*t)*sin(0.39e-4*t)) +0.12e-63*I*(0.74e65*exp(-0.14e-2*t)*cos(0.39e-4*t) +0.18e66*exp(-0.14e-2*t)*sin(0.39e-4*t)) -41*exp(-0.90e-3*t)*cos(0.82e-4*t) -11*exp(-0.90e-3*t)*sin(0.82e-4*t) +0.12e-63*I*(-0.49e65*exp(-0.90e-3*t)*cos(0.82e-4*t) +0.18e66*exp(-0.90e-3*t)*sin(0.82e-4*t)) +0.12e-63*I*(0.49e65*exp(-0.90e-3*t)*cos(0.82e-4*t) -0.18e66*exp(-0.90e-3*t)*sin(0.82e-4*t)) -26*exp(-0.75e-3*t)-2.0*exp(-0.71e-3*t)

  19. Unit Impulse • Steady state achieved • Quadruple concentration of glucose

  20. MATLAB Code: Impulse %impulse responsefunction conc=ustank(t,solution)global Tin V Fin Fout CEin Cgin B rho CpT=solution(1);Cg=solution(2);CE=solution(3);rate=Cg*10^3*exp(-50/T)if(t>1000&t<1100)Cgin=600;else Cgin=150;endconc(1,1)=(Tin*Fin*Cp*rho-T*Fout*rho*Cp+B*rate)/(V*rho*Cp);conc(2,1)=(Cgin*Fin-Cg*Fout-(rate))/V; conc(3,1)=(CEin*Fin-CE*Fout+0.5*rate)/V;

  21. Simulink: Impulse

  22. Laplace Transform E’(t) = -0.38e-3*exp(-0.14e-2*t)*cos(0.39e-4*t) +0.15e-3*exp(-0.14e-2*t)*sin(0.39e-4*t) -0.12e-57*I*(-0.63e54*exp(-0.14e-2*t)*cos(0.39e-4*t) -0.16e55*exp(-0.14e-2*t)*sin(0.39e-4*t)) -0.12e-57*I*(0.63e54*exp(-0.14e-2*t)*cos(0.39e-4*t) +0.16e55*exp(-0.14e-2*t)*sin(0.39e-4*t)) +0.24e-3*exp(-0.90e-3*t)*cos(0.82e-4*t) +0.91e-4*exp(-0.90e-3*t)*sin(0.82e-4*t) -0.12e-57*I*(-0.39e54*exp(-0.90e-3*t)*cos(0.82e-4*t) +0.10e55*exp(-0.90e-3*t)*sin(0.82e-4*t)) -0.12e-57*I*(0.39e54*exp(-0.90e-3*t)*cos(0.82e-4*t) -0.10e55*exp(-0.90e-3*t)*sin(0.82e-4*t)) +0.13e-3*exp(-0.75e-3*t) +0.96e-5*exp(-0.71e-3*t)

  23. MATLAB Results forSteady State

  24. Simulink Results for Steady State

  25. Perturbed Steady State Results

  26. MATLAB Results forStep Change

  27. Simulink Results for Step Change

  28. Perturbed Step Change Results

  29. MATLAB Results for Impulse

  30. 74 6000 500 Expected Simulink Results for Impulse

  31. Perturbed Impulse Results

  32. Conclusions • MATLAB vs. Simulink • Linear Approximations • Perturbing Inputs • Modeling Processes

  33. Questions?

More Related