1 / 24

Influence of H2 formation on PDR model results

Influence of H2 formation on PDR model results. M. Röllig V. Ossenkopf, C. Glück Universität zu Köln, Germany . Outline. H 2 formation on grain surfaces chemisorption vs. physisorption H 2 formation efficiencies on different dust sorts chemical H 2 heating & cooling

lidia
Download Presentation

Influence of H2 formation on PDR model results

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Influence of H2 formation on PDR model results M. Röllig V. Ossenkopf, C. Glück Universität zu Köln, Germany CO Ladder Workshop - Leiden 2012

  2. Outline • H2formation on grain surfaces • chemisorption vs. physisorption • H2 formation efficiencies on different dust sorts • chemical H2 heating & cooling • effects on clump structure CO Ladder Workshop - Leiden 2012

  3. Introduction Numerical PDR models of proved to be a valuable tools in analyzing and understanding the local conditions in massive star forming regions. Hollenbach & Tielens, 1999, R.o.m.P., 71 Ossenkopf et al, 2010, A&A 518, L79v CO Ladder Workshop - Leiden 2012

  4. Introduction Yet, here be dragons... • complex physics / chemistry • complex/unknown local conditions Röllig et al. 2007, A&A, 467 θ1Ori C (O6) CO Ladder Workshop - Leiden 2012

  5. Introduction and unfortunately, deficient input data • missing experimental data • inter/extrapolation CO Ladder Workshop - Leiden 2012

  6. H2 formation on grain surfaces CO Ladder Workshop - Leiden 2012

  7. H2 formation on grain surfaces • H atoms hitting grain surfaces can stick weakly (physisorption) or strongly (chemisorption) bound. • Td>100 K desorption overcomes binding and H2 formation efficiency →0 • Chemisorbed H atoms can effectively form H2 up to Td>500K • we implemented the formalism presented by Cazaux & Tielens (2002,2004) in the KOSMA- chemistry. CO Ladder Workshop - Leiden 2012

  8. H2 formation efficiency Cazaux & Tielens 2004, ApJ 604 CO Ladder Workshop - Leiden 2012

  9. H2 formation efficiency Cazaux & Tielens 2004, ApJ 604 CO Ladder Workshop - Leiden 2012

  10. H2 formation efficiency Cazaux & Tielens 2004, ApJ 604 CO Ladder Workshop - Leiden 2012

  11. H2 formation efficiency Cazaux & Tielens 2004, ApJ 604 CO Ladder Workshop - Leiden 2012

  12. H2 formation rate total formation rate depends on total dust surface CO Ladder Workshop - Leiden 2012

  13. H2 formation rate Weingartner andDraine, 2001, ApJ 548 CO Ladder Workshop - Leiden 2012

  14. H2 formation rate CO Ladder Workshop - Leiden 2012

  15. H2 heating/cooling • H2 binding energy 4.5 eV → H2 formation heating • kinetic H2 dissociation cooling (Lepp & Shull, 1983, ApJ 270, 578) H2 + H → H + H + H - 4.5eV H2 + H2 → H2 + H + H - 4.5eV Alternatively: sticking coeff. CO Ladder Workshop - Leiden 2012

  16. H2 heating/cooling Le Bourlot et al. 2012 CO Ladder Workshop - Leiden 2012

  17. H2 heating/cooling Le Bourlot et al. 2012 CO Ladder Workshop - Leiden 2012

  18. H2 heating/cooling A: R=const, B: only LH, C=LH+ER Le Bourlot et al. 2012 CO Ladder Workshop - Leiden 2012

  19. H2 heating/cooling Le Bourlot et al. 2012 A: R=const, B: only LH, C=LH+ER CO Ladder Workshop - Leiden 2012

  20. Dust influence CO Ladder Workshop - Leiden 2012

  21. Dust influence radiativetransfereffect H2chemistryeffect CO Ladder Workshop - Leiden 2012

  22. Dust influence • H2 binding energy 4.5 eV → H2 formation heating • kinetic H2 dissociation cooling (Lepp & Shull, 1983, ApJ 270, 578) H2 + H → H + H + H - 4.5eV H2 + H2 → H2 + H + H - 4.5eV • large effect on H-H2 transition region chemistry CO Ladder Workshop - Leiden 2012

  23. Dust influence • H2 binding energy 4.5 eV → H2 formation heating • kinetic H2 dissociation cooling (Lepp & Shull, 1983, ApJ 270, 578) H2 + H → H + H + H H2 + H2 → H2 + H + H • large effect on H-H2 transition region chemistry • chemistry  physics CO Ladder Workshop - Leiden 2012

  24. Summary • Great need for reliable (astrochemistry) data • Lab results need to be robust against different modeling applications • Growing understanding of dust properties and H2 formation process dramatically influences model results • chemistry and physics strongly connected to each other CO Ladder Workshop - Leiden 2012

More Related