740 likes | 1.62k Views
Chapter 4. Molecular Symmetry. Symmetry Elements and Symmetry Operations. Identity Proper axis of rotation Mirror planes Center of symmetry Improper axis of rotation. Symmetry Elements and Symmetry Operations. Identity => E. Symmetry Elements and Symmetry Operations.
E N D
Chapter 4 Molecular Symmetry Dr. S. M. Condren
Symmetry Elements and Symmetry Operations • Identity • Proper axis of rotation • Mirror planes • Center of symmetry • Improper axis of rotation Dr. S. M. Condren
Symmetry Elements and Symmetry Operations • Identity => E Dr. S. M. Condren
Symmetry Elements and Symmetry Operations • Proper axis of rotation => Cn • where n = 2, 180o rotation • n = 3, 120o rotation • n = 4, 90o rotation • n = 6, 60o rotation • n = , (1/)o rotation • principal axis of rotation, Cn Dr. S. M. Condren
2-Fold Axis of Rotation Dr. S. M. Condren
3-Fold Axis of Rotation Dr. S. M. Condren
Rotations for a Trigonal Planar Molecule Dr. S. M. Condren
Symmetry Elements and Symmetry Operations Mirror planes => sh => mirror plane perpendicular to a principal axis of rotation sv => mirror plane containing principal axis of rotation sd => mirror plane bisects dihedral angle made by the principal axis of rotation and two adjacent C2 axes perpendicular to principal rotation axis Dr. S. M. Condren
Mirrors svsv Cl Cl sh I sd sd Cl Cl Dr. S. M. Condren
Rotations and Mirrors in a Bent Molecule Dr. S. M. Condren
Benzene Ring Dr. S. M. Condren
Symmetry Elements and Symmetry Operations • Center of symmetry => i Dr. S. M. Condren
Center of Inversion Dr. S. M. Condren
Inversion vs. C2 Dr. S. M. Condren
Symmetry Elements and Symmetry Operations • Improper axis of rotation => Sn • rotation about n axis followed by inversion through center of symmetry Dr. S. M. Condren
Improper Rotation in a Tetrahedral Molecule Dr. S. M. Condren
S1 and S2 Improper Rotations Dr. S. M. Condren
Successive C3 Rotations onTrigonal Pyramidal Molecule Dr. S. M. Condren
Linear Molecules Dr. S. M. Condren
Selection ofPoint Group from Shape • first determine shape using Lewis Structure and VSEPR Theory • next use models to determine which symmetry operations are present • then use the flow chart Figure 3.9, Pg. 81 text to determine the point group Dr. S. M. Condren
Decision Tree Dr. S. M. Condren
Selection ofPoint Group from Shape 1. determine the highest axis of rotation 2. check for other non-coincident axis of rotation 3. check for mirror planes Dr. S. M. Condren
H2O and NH3 Dr. S. M. Condren
Geometric Shapes Dr. S. M. Condren
Orbital Symmetry, pz C2v z E + X(E) = +1 - + + C2(z) x - + - X(C2(z)) = +1 y sv(xz) - X(sv(xz)) = +1 sv(yz) + - X(sv(xz)) = +1 Dr. S. M. Condren
Orbital Symmetry, py C2v X(E) = +1 - z + E + - C2(z) - x X(C2(z)) = -1 + sv(xz) y + X(sv(xz)) = -1 - sv(yz) - X(sv(xz)) = +1 + Dr. S. M. Condren
Orbital Symmetry, px C2v z X(E) = +1 - + E C2(z) x + - - + X(C2(z)) = -1 sv(xz) y - + X(s(xz)) = +1 sv(yz) + - X(sv(xz)) = -1 Dr. S. M. Condren
Water, C2v Point GroupTranslational motion in y z y o o HHHH x sv(xz) “asymmetric” => -1 Dr. S. M. Condren
Water, C2v Point GroupTranslational motion in y z o y HH x o HH sv(yz) “symmetric” => +1 Dr. S. M. Condren
Water, C2v Point GroupTranslational motion in y z y C2(z) x O H H “asymmetric” = - 1 Dr. S. M. Condren
Water, C2v Point GroupTranslational motion in y Representation: E C2(z) sv(xz) sv(yz) G3 +1 -1 -1 +1 Dr. S. M. Condren
Water, C2v Point GroupRotation about z axis z O rHa Hbs r - movement out of plane towards observer s - movement out of plane away from observer a,b - labeling to distinguish hydrogens before and after symmetry operations Dr. S. M. Condren
Water, C2v Point GroupRotation about z axis z O E O rHa Hbs rHa Hbs +1 Dr. S. M. Condren
Water, C2v Point GroupRotation about z axis z O C2z O rHa Hbs rHb Has +1 Dr. S. M. Condren
Water, C2v Point GroupRotation about z axis z O sv(xz) O rHa Hbs sHb Har x -1 Dr. S. M. Condren
Water, C2v Point GroupRotation about z axis z O sv(yz) O rHa Hbs sHa Hbr -1 Dr. S. M. Condren
Water, C2v Point GroupRotation about z axis Representation E C2(z) sv(xz) sv(yz) G4 +1 +1 -1 -1 Dr. S. M. Condren
Water, C2v Point Group Representations: Rotation E C2(z) sv(xz) sv(yz) G4 +1 +1 -1 -1 Dr. S. M. Condren
Water, C2v Point Group Representation: Translation E C2(z) sv(xz) sv(yz) G1 +1 +1 +1 +1 Tz G2 +1 -1 +1 -1 Tx G3 +1 -1 -1 +1 Ty Dr. S. M. Condren
Water, C2v Point Group Representation: Rotation E C2(z) sv(xz) sv(yz) G4 +1 +1 -1 -1 Rz G5 +1 -1 +1 -1 Ry G6 +1 -1 -1 +1 Rx Dr. S. M. Condren
Water, C2v Point Group Character Table E C2(z) sv(xz) sv(yz) A1 +1 +1 +1 +1 Tz G1 A2 +1 +1 -1 -1 Rz G4 B1 +1 -1 +1 -1 Ry, Tx G2 , G5 B2 +1 -1 -1 +1 Rx,Ty G3, G6 Dr. S. M. Condren
Vibrational Modes in CO2 For linear molecules: 3N - 5 IR fundamentals Dr. S. M. Condren
Vibrational Modes in SO2 For non-linear molecules: 3N - 6 IR fundamentals Dr. S. M. Condren
Vibration Modes for SO3 For non-linear molecules: 3N - 6 IR fundamentals Dr. S. M. Condren
Vibrational Modes for CH4 For non-linear molecules: 3N - 6 IR fundamentals Dr. S. M. Condren