1.06k likes | 1.24k Views
Sudaryatno Sudirham. Mengenal Sifat Material #3. Klik untuk melanjutkan. Bahan Kuliah Terbuka dalam format pdf tersedia di www.buku-e.lipi.go.id dalam format pps beranimasi tersedia di www.ee-cafe.org. Paparan Teori ada di Buku -e dalam format pdf tersedia di
E N D
Sudaryatno Sudirham MengenalSifat Material #3 Klikuntukmelanjutkan
BahanKuliah Terbuka dalam format pdftersedia di www.buku-e.lipi.go.id dalam format ppsberanimasitersedia di www.ee-cafe.org
PaparanTeori ada di Buku-e dalam format pdf tersedia di www.buku-e.lipi.go.id dan www.ee-cafe.org
Thermodinamika merupakan cabang ilmu pengetahuan yang mencakup permasalahan transfer energi dalam skala makroskopis Thermodinamika tidak membahas hal-hal mikroskopis (seperti atom, molekul) melainkan membahas besaran-besaran makroskopis yang secara langsung dapat diukur, seperti tekanan, volume, temperatur
sistem Sistem Sistem adalah obyek atau kawasan yang menjadi perhatian kita Kawasan di luar sistem disebut lingkungan lingkungan lingkungan bidang batas bidang yang membatasi sistem terhadap lingkungannya. mungkin berupa sejumlah materi atau suatu daerah yang kita bayangkan dibatasi oleh suatu bidang batas mampu mengisolasi sistem ataupun memberikan suatu cara interaksi tertentu antara sistem dan lingkungannya
sistem sistem sistem energi energi ada transfer energi tidak ada transfer materi massa sistem tidak berubah materi ada transfer materi massa sistem berubah Dengan adanya bidang batas antara sistem dan lingkungannya, beberapa kemungkinan bisa terjadi tidak ada transfer energi tidak ada transfer materi sistemterisolasi sistemtertutup sistem terbuka
sistem tidak dapat dipengaruhi oleh lingkungannya sistemterisolasi Perubahan-perubahan dalam sistem mungkin saja terjadi perubahan temperatur perubahan tekanan Perubahan dalam sistem terisolasi tidak dapat terus berlangsung tanpa batas Suatu saat akan tercapai kondisi keseimbangan internal yaitu kondisi di mana perubahan-perubahan dalam sistem sudah tidak lagi terjadi
sistemtertutup sistem energi sistem dapat berinteraksi dengan lingkungannya perubahan dalam sistem dibarengi dengan perubahan di lingkungannya. menuju ke keseimbangan internal keseimbangan eksternal. Apabila keseimbangan telah tercapai, tidak lagi terjadi perubahan-perubahan di dalam sistem dan juga tidak lagi terjadi transfer apapun antara sistem dengan lingkungannya
sistem Status thermodinamik sistem merupakan spesifikasi lengkap susunan dan sifat fisis suatu sistem. Sifat sistem ditentukan oleh satu set tertentu peubah-peubah thermodinamik. Tidak semua peubah thermodinamik harus diukur guna menentukan sifat sistem. Apabila jumlah tertentu besaran fisis yang diukur dapat digunakan untuk menentukan besaran-besaran fisis yang lain maka jumlah pengukuran tersebut dikatakan sudah lengkap. sudah dapat menentukan status sistem, walaupun jumlah itu hanya sebagian dari seluruh besaran fisis yang menentukan status.
sistem Jadi eksistensi sistem ditentukan oleh status-nya, sedangkan jumlah peubah yang perlu diukur agar status sistem dapat ditentukan tergantung dari sistem itu sendiri. Pengukuran atau set pengukuran peubah yang menentukan status tersebut harus dilakukan dalam kondisi keseimbangan Keseimbangan sistem tercapai apabila semua peubah yang menetukan sifat sistem tidak lagi berubah.
Energi energi kinetik energi potensial terkait gerak obyek terkait dengan posisi atau kondisi obyek. dapat dikonversi timbal balik energi eksternal Energi Internal Sistem Energi internal, E, adalah sejumlah energi yang merupakan besaran intrinsik suatu sistem yang berada dalam keseimbangan thermodinamis Energi internal merupakan fungsi status Perubahan nilai suatu fungsi status hanya tergantung dari nilai awal dan nilai akhir dan tidak tergantung dari alur perubahan dari status awal menuju status akhir
sistem Panas Panas adalah salah satu bentuk energi Pada sistem tertutup, panas dapat menembus bidang batas bila antara sistem dan lingkungannya terdapat gradien temperatur. Sejumlah panas dapat ditransfer dari sistem ke lingkungan Sejumlah panas dapat ditransfer dari lingkungan ke sistem Panas bukanlah besaran intrinsik sistem. Ia bisa masuk ke sistem dan juga bisa keluar dari sistem. q diberi tanda positif jika ia masuk ke sistem q diberi tanda negatif jika ia keluar dari sistem
sistem Kerja Kerja adalah bentuk energi yang ditranfer antara sistem dengan lingkungannya karena ada interaksi gaya antara sistem dan lingkungannya. Kerja, dengan simbol w, juga bukan besaran intrinsik sistem; bisa masuk ataupun keluar dari sistem w diberi tanda positif jika ia masuk ke sistem w diberi tanda negatif jika ia keluar dari sistem
Konservasi Energi Energi total sistem dan lingkungannya adalah terkonservasi Energi tidak dapat hilang begitu saja ataupun diperoleh dari sesuatu yang tidak ada; namun energi dapat terkonversi dari satu bentuk ke bentuk yang lain
Hukum Thermodinamika Pertama dan Enthalpi
sistem Hukum Thermodinamika Pertama atau Hukum Kekekalan Energi sistemterisolasi Jika status sistem berubah melalui alur (cara) perubahan tertentu, maka energi internal sistem ini berubah. dan sistem kembali pada status semula melalui alur perubahan yang berbeda energi internal akan kembali pada nilai awalnya B E A status Perubahan neto dari energi internal adalah nol sebab jika tidak, akan menyalahi prinsip konservasi energi.
Perubahan nilai hanya tergantung dari nilai awal dan nilai akhir Perubahan energi internal, yang mengikuti terjadinya perubahan status sistem, tidak tergantung dari alur perubahan status tetapi hanya tergantung dari status awal dan status akhir Setiap besaran yang merupakan fungsi bernilai tunggal dari status thermodinamik adalah fungsi status.
Apabila hanya tekanan atmosfer yang bekerja pada sistem, maka jika energi panas sebesar dqmasuk ke sistem, energi internal sistem berubah sebesar perubahan volume sistem kerja pada lingkungan PdV tekanan atmosfer konstan Maka dimunculkan peubah baru, yang sudah memperhitungkan V, yang disebutenthalpi Membuat P konstan tidak sulit dilakukan namun membuat V konstan sangat sulit P dan V adalah peubah thermodinamik yang menentukan status sistem, sedangkan E adalah fungsi status, maka H juga fungsi bernilai tunggal dari status enthalpi H juga fungsi status
Contoh: Perubahan Enthalpi Pada Reaksi Kimia • Jika Hakhir > Hawal maka H > 0 • Terjadi transfer energi ke sistem • penambahan enthalpi pada sistem • proses endothermis • Jika Hakhir < Hawal maka H < 0 • Terjadi transfer energi ke lingkungan • enthalpi sistem berkurang • proses eksothermis Dalam reaksi kimia, reagen (reactant) merupakan status awal sistem hasil reaksi merupakan status akhir sistem
Hukum Hess Apabila suatu reaksi kimia merupakan jumlah dua atau lebih reaksi, maka perubahan enthalpi total untuk seluruh proses merupakan jumlah dari perubahan enthalpi reaksi-reaksi pendukungnya. Hukum Hess merupakan konsekuensi dari hukum kekekalan energi. Hukum Hess terjadi karena perubahan enthalpi untuk suatu reaksi adalah fungsi status, suatu besaran yang nilainya ditentukan oleh status sistem. Perubahan enthalpi yang terjadi baik pada proses fisika maupun proses kimia tidak tergantung pada alur proses dari status awal ke status akhir Perubahan enthalpi hanya tergantung pada enthalpi pada status awal dan pada status akhir.
Proses Reversible danIrreversible
Proses Reversible Jika suatu sistem bergeser dari status keseimbangannya, sistem ini menjalani suatu proses dan selama proses berlangsung sifat-sifat sistem berubah sampai tercapai keseimbangan status yang baru. Proses reversible merupakan suatu proses perubahan yang bebas dari desipasi (rugi) energi dan dapat ditelusur balik dengan tepat. Sulit ditemui suatu proses yang reversible namun jika proses berlangsung sedemikian rupa sehingga pergeseran keseimbangan sangat kecil maka proses ini dapat dianggap sebagai proses yang reversible Proses reversible dianggap dapat berlangsung dalam arah yang berlawanan mengikuti alur proses yang semula diikuti. Proses Irreversible Proses irreversible (tidak reversible) merupakan proses yang dalam perjalanannya mengalami rugi (desipasi) energi sehingga tidak mungkin ditelusur balik secara tepat.
Teorema Clausius Dalam proses reversible Dalam proses irreversible Proses reversible merupakan proses yang paling efisien, tanpa rugi (desipasi) energi Proses irreversible memiliki efisiensi lebih rendah
Entropi Hukum Thermodinamika Ke-dua Hukum Thermodinamika Ke-tiga
Proses reversible Tanda ini menyatakan bahwa proses berlangsung dalam satu siklus Untuk proses reversible yang berjalan tidak penuh satu siklus, melainkan berjalan dari status A ke status B dapat dituliskan qrev adalah panas yang masuk ke sistem pada proses reversible. Karena masuknya energi panas menyebabkan enthalpi sistem meningkat sedangkan enthalpi merupakan fungsi status maka juga merupakan fungsi status • S adalah peubah status yang disebut entropi
Proses reversible adalah yang paling efisien Ada rugienergi Takadarugienergi Proses yang umumterjadiadalaqh proses irreversible Panas dq yang kitaberikankesistempadaumumnyaadalahdqirrev Denganpemberian panas, entropisistemberubahsebesardSsistem dan sesuaidengandefinisinyamaka tanpamempedulikanapakah proses yang terjadireversibleatauirreversible
Dalamsistemtertutup, jikadqcukupkecilmakapergeseranstatus yang terjadi di lingkungan akan kembalikestatussemula. Denganmengabaikanperubahan-perubahankecillain yang mungkinjugaterjadi, proses di lingkungandapatdianggapreversible. Perubahanentropilingkunganmenjadi Perubahan entropi neto yang akan bernilai positif jika proses yang terjadiadalah proses irreversiblekarenadalam proses irreversibledq < dqrev • Proses reversiblehanya akan terjadijikadSneto = 0
Suatu proses spontan adalah proses yang terjadi secara alamiah. Proses ini merupakan proses irreversible, karena jika tidak proses spontan tidak akan terjadi. Karena proses spontan adalah proses irreversible di mana dSneto> 0 maka dalam proses spontan total entropi selalu bertambah. • Ini adalah pernyataan Hukum Thermodinamika Kedua. Kita ingat bahwa proses reversible adalah proses yang hampir tidak bergeser dari keseimbangannya atau dengan kata lain tidak ada perubahan yang cukup bisa diamati. Oleh karena itu proses spontan tidak mungkin reversible atau selalu irreversible.
Dengan mengingat relasi dq = CPdT, kapasitas panas pada tekanan konstan Atas usulan Planck, Nernst pada 1906 menyatakan bahwa pada temperatur 0 K entropi dari semua sistem harus sama. Konstanta universal ini di-set sama dengan nol sehingga Persamaan ini biasa disebut sebagai Hukum Thermodinamika Ke-tiga Persamaan ini memungkinkan dilakukannya perhitungan nilai absolut entropi dari suatu sistem dengan membuat batas bawah integrasi adalah 0 K. maka entropi S pada temperatur T dari suatu sistem adalah
Proses reaksi dari beberapa reagen menghasilkan hasil reaksi. Apabila A+B tetap dominan terhadap C dalam waktu yang lama, maka disebut reaksi nonspontan Jika C dominan terhadap A+B dalam waktu yang tidak lama, maka reaksi tersebut disebut reaksi spontan diperlukan upaya tertentu agar diperoleh C yang dominan Reaksispontandisebutjugaproduct-favored reaction Reaksinonspontandisebutjugareactant-favored reaction Pada umumnya, reaksi eksothermis yang terjadi pada temperatur kamar adalah reaksi spontan. Energi potensial yang tersimpan dalam sejumlah (relatif) kecil atom / molekul reagen menyebar ke sejumlah (relatif) besar atom / molekul hasil reaksi dan atom / molekul lingkungannya. Penyebaran energi lebih mungkin terjadi daripada pemusatan (konsentrasi) energi.
Di samping energi, materi yang sangat terkonsentrasi juga cenderung untuk menyebar • Dengan demikian ada dua cara untuk suatu sistem menuju kepada status yang lebih mungkin terjadi, yaitu 1). melalui penyebaran energi ke sejumlah partikel yang lebih besar; 2). melalui penyebaran partikel sehingga susunan partikel menjadi lebih acak. Dengan dua cara tersebut ada empat kemungkinan proses yang bisa terjadi
a). Jika reaksi adalah eksothermis dan susunan materi menjadi lebih acak, maka reaksi ini merupakan reaksi spontan pada semua temperatur. • b). Jika reaksi adalah eksothermis tetapi susunan materi menjadi lebih teratur, maka reaksi ini cenderung merupakan reaksi spontan pada suhu kamar akan tetapi menjadi reaksi nonspontan pada temperatur tinggi. Hal ini berarti bahwa penyebaran energi dalam proses terjadinya reaksi kimia lebih berperan dibandingkan dengan penyebaran partikel • c). Jika reaksi adalah endothermis dan susunan materi menjadi lebih acak, maka reaksi ini cenderung merupakan reaksi nonspontan pada temperatur kamar tetapi cenderung menjadi spontan pada temperatur tinggi. • d). Jika reaksi adalah endothermis dan susunan materi menjadi lebih teratur, maka tidak terjadi penyebaran energi maupun penyebaran partikel yang berarti proses reaksi cenderung nonspontan pada semua temperatur. Karena reaksi spontan merupakan proses irreversible di mana terjadi kenaikan entropi maka kenaikan entropi menjadi pula ukuran/indikator penyebaran partikel
Kapasitas Panas dan NilaiAbsolutEntropi Konstanta Untuk Menetukan Kapasitas Panas Padatan cal/mole/K [12]. EntropiAbsolutPada Kondisi Standar cal/mole derajat [12]
Energi Bebas (free energies)
Kelvin memformulasikan bahwa pada umumnya alam tidak memperkenankan panas dikonversikan menjadi kerja tanpa disertai oleh perubahan besaran yang lain. • Kalau formulasi Kelvin ini kita bandingkan dengan pernyataan Hukum Thermodinamika Ke-dua, maka besaran lain yang berubah yang menyertai konversi panas menjadi kerja adalah perubahan entropi. • Perubahan neto entropi, yang selalu meningkat dalam suatu proses, merupakan energi yang tidak dapat diubah menjadi kerja, atau biasa disebut energi yang tak dapat diperoleh (unavailable energy).
Sesuai Hukum Thermodinamika Pertama, jika kita masukkan energi panas ke dalam sistem dengan maksud untuk mengekstraknya menjadi kerja maka yang bisa kita peroleh dalam bentuk kerja adalah energi yang masuk ke sistem dikurangi energi yang tak bisa diperoleh, yang terkait dengan entropi. • Karena mengubah energi menjadi kerja adalah proses irreversible, sedangkan dalam proses irreversible entropi selalu meningkat, maka energi yang tak dapat diperoleh adalah • TS temperatur entropi Energi yang bisa diperoleh disebut energi bebas yang diformulasikan oleh Helmholtz sebagai Hemholtz Free Energy
Hemholtz Free Energy Jika temperatur konstan dan tidak ada kerja yang dilakukan oleh sistem pada lingkungan maupun dari lingkungan pada sistem, maka Karena Jadi pada proses isothermal di mana tidak ada kerja, energi bebas Helmholtz menurun dalam semua proses alamiah dan mencapai nilai minimum setelah mencapai keseimbangan
tekanan atmosfer Gibbs Free Energy Gibbs mengajukan formulasi energi bebas, yang selanjutnya disebut energi bebas Gibbs (Gibbs Free Energy), G, dengan memanfaatkan definisi enthalpi Jika tekanan dan temperatur konstan (yang tidak terlalu sulit untuk dilakukan), maka Jadi jika temperatur dan tekanan dibuat konstan, energi bebas Gibb mencapai minimum pada kondisi keseimbangan Pada proses irreversible
Fasa Fasa adalah daerah materi dari suatu sistem yang secara fisis dapat dibedakan dari daerah materi yang lain dalam sistem tersebut Antara fasa dengan fasa dapat dipisahkan secara mekanis Fasa memiliki struktur atom dan sifat-sifat sendiri Kita mengenal sistem satu-fasa & sistem multi-fasa Homogenitas Dalam keseimbangan, setiap fasa adalah homogen Komponen Sistem Komponen sistem adalah unsur atau senyawa yang membentuk satu sistem. Kita mengenal sistem komponen-tunggal & sistem multi-komponen.
Diagram Keseimbangan Diagram keseimbangan merupakan diagram di mana kita bisa membaca fasa-fasa apa saja yang hadir dalam keseimbangan pada berbagai nilai peubah thermodinamik Derajat Kebebasan Derajat kebebasan (degree of freedom) didefinisikan sebagai jumlah peubah thermodinamik yang dapat divariasikan secara tidak saling bergantungan tanpa mengubah jumlah fasa yang berada dalam keseimbangan.
Larutan Padat Atom atau molekul dari satu komponen terakomodasi di dalam struktur komponen yang lain Larutan padat bisa terjadi secara subsitusional interstisial Derajat kelarutan Berbagaiderajatkelarutanbisaterjadi Dua komponen dapat membentuk larutan menyeluruh (saling melarutkan) jika status keseimbangan thermodinamik dari sembarang komposisi dari keduanya membentuk sistem satu fasa. Hanya larutan substitusional yang dapat mencapai keadaan ini.
Kaidah Hume-Rothery Agar larutan padat dapat terjadi: Perbedaan ukuran atom pelarut dan atom terlarut < 15%. Struktur kristal dari komponen terlarut sama dengan komponen pelarut. Elektron valensi zat terlarut dan zat pelarut tidak berbeda lebih dari satu. Elektronegativitas zat terlarut dan pelarut kurang-lebih sama, agar tidak terjadi senyawa sehingga larutan yang terjadi dapat berupa larutan satu fasa.
Hlarutan HB HB HB sebelum pelarutan sebelumpelarutan Hlarutan HA HA HA Hlarutan A B A B A B xB xB xB Enthalpi Larutan Pada reaksi kimia: Jika Hakhir> HawalH > 0 penambahan enthalpi pada sistem (endothermis) JikaHakhir< Hawalenthalpi sistem berkurang (eksothermis). Dalam peristiwa pelarutan terjadi hal yang mirip yaitu perubahan enthalpi bisa negatif bisa pula positif Hlarutan< sebelumpelarutanuntuksemuakomposisi Hlarutan= sebelumpelarutan; inikeadaan ideal Hlarutan> sebelumpelarutanuntuksemuakomposisi
S0 S S SB sebelum pelarutan SA A B A B xB xB Entropi Larutan • Entropi dalam proses irreversible akan meningkat. • entropi larutan akan lebih tinggi dari entropi masing-masing komponen sebelum larutan terjadi, karena pelarutan merupakan proses irreversible. • jika SA adalah entropi komponen A tanpa kehadiran B, dan SB adalah entropi komponen B tanpa kehadiran A, maka Entropipelarutan Sesudah Sebelum entropisesudahpelarutan > sebelumpelarutan