1 / 25

Nuclear break-up of exotic nuclei

Nuclear break-up of exotic nuclei. I History of the towing mode in stable nuclei the 40 Ar+ 58 Ni @ 40 MeV/A case II The TDSE calculation III The case of the 11 Be break-up IV The extension to borromean nuclei V Conclusions - Perspectives. J a s s.

Download Presentation

Nuclear break-up of exotic nuclei

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Nuclear break-up of exotic nuclei • I History of the towing mode in stable nuclei • the 40Ar+58Ni @ 40 MeV/A case • II The TDSE calculation • III The case of the 11Be break-up • IV The extension to borromean nuclei • V Conclusions - Perspectives Jass

  2. Inelastic Channel-projectile=ejectile A A A A A Target A+1 Projectile A A A A Inelastic Scattering GR and multiphonons Knock Out Pick-up Break-up New mechanism? 1 emitted particle Jass 1 or several emitted particle(s)

  3. 40Ar qlab p or n 58Ni Feeding of the first hole states of the daughter nucleus 40Ar Angular distribution of nucleon emitted in 58Ni(40Ar, 40Ar + n or p) Jass

  4. Action F 0 r 0 r 0 r 0 r F 0 r t Jass

  5. What happens when a force acts on a mass for a given period of time ? Action .. m F F = m.x x . xo = 0 . x = d  (ro . A1/3)= 4 fm d E ~ 40 MeV/A tc = vp vp= 10+23 fm.s-1 . . F x = . tc + xo tc = 4. 10-23 s m F = 15 MeV.fm-1 3 fm 15 . 9 . 10+46 .4. 10-23 = 6.10+22 fm.s-1 900 Right order of magnitude! Jass

  6. Nuclear break-up of exotic nuclei • I History of the towing mode in stable nuclei • the 40Ar+58Ni @ 40 MeV/A case • II The TDSE calculation • III The case of the 11Be break-up • IV The extension to borromean nuclei • V Conclusions - Perspectives Jass

  7. 2 p U 0 2. m - r 0 1+ e a 0 Time dependent solutions ^ proj target 2 U U p proj 0 0 H = + + target 0(t)) ( r ( r - r (t)) 2. m - r 0 1+ e 1+ e a a 0 0 ^ FFT of (x,t) d i Hdt  = H   ( t + dt ) =  ( t ) i h - e h d t Split operator . . . and Evolution of a one-particle wave function via the resolution of time dependent Schrödinger J.A. S. D. Lacroix Ph. Chomaz ^ Static solutions H = + ( r ) H  = .  diagonalization eigen states, eigen values Exact up to 2sd order Jass D.Lacroix et al. Nucl. Phys. A658 (1999) p273

  8. Resolution of time dependent Schrödinger equation on a mesh non perturbative calculation • The calculation includes : • TDSE for a wave function in a moving potential • diffraction (refraction!) through the nuclear potential • single particle excitations to unbound states • n-core excitations (!!) • « shaking  » of the core (Coulomb classical trajectory) proj target proj • The calculation does not include : • spin-orbit, pairing • No structure info • core or target excitations (not excluded either) • nucleon-nucleon dissipation • quantum relative motion • energy conservation target Jass

  9. Towing Mode Projectile WS Einc = 44 MeV/A Target WS Evolution of a wave function via the resolution of time dependent Schrödinger t = 0 t = 130 fm/c Initial wave function Jass

  10. y x Same density probability after subtraction of the bound eigen states y Initial Density Probability in the target potential at rest in the lab frame. Evolution x Density probablility after the projectile has passed FFT py ds/dW (q) Fourier transform of the former density probability. px Jass Angular distribution of the emitted particle

  11. 40Ar 58Ni b=10 fm 58Ni(40Ar,40Ar+p or n) 2p calculation, b from 10 to 12 fm Plus flat background ~50° py ~50° 2s px Jass

  12. Nuclear break-up of exotic nuclei • I History of the towing mode in stable nuclei • the 40Ar+58Ni @ 40 MeV/A case • II The TDSE calculation • III The case of the 11Be break-up • IV The extension to borromean nuclei • V Conclusions - Perspectives Jass

  13. 11Be break-up calculations WS potential to bound the 2s by 0.5 MeV Density of 2s 2000 13 fm Does not change when using N.Vinh Mau potential 80 15 1 Need to use a Coulomb trajectory : Weakly bound neutron Large Coulomb break up Runge Kuttar(t+dt) = r(t-dt) + 2.dt.p(t)/m p(t) = p(t-2dt) + 2.dt.F(t-dt)/m Imaginary time evolution extract a stable eigen state (M.Fallot...) for the cartesian mesh Jass Interpolation ...

  14. Neutron angular distributions Au,Ti,Be (11Be, 10Be + n) @ 41 Mev/A Data from : R.Anne et al.,Nucl.Phys. A575 (1994) 125 lab lab lab neutron neutron neutron M.Fallot, J.A.Scarpaci, D.Lacroix, Ph. Chomaz et J.Margueron, Nuclear Physics A700 (2002) 70 Large b (Coulomb break-up) = forward peaked emitted neutron Small b (nuclear break-up) = responsible for neutrons emitted at large angle The nuclear break-up is fully reproduced by the interaction of the particle with the mean field of the target - no need of n-n interaction…. Jass

  15. 11Be a halo nucleus n • Neutron bound by 0.504 MeV • GS (Jp =1/2+): • |GS>= a|2s1/2 0+> + b |1d5/2 2+> 10Be a2 (S2s) et b2 (S1d): spectroscopic factors 10Be 2+ state of b2=0.74 Ref: Auton et al. NP A 322(1970) 305 g Eg=3.37 MeV Jass

  16. GANIL SISSI • Primary beam of 13C @ 75 A.MeV • Secondary beam of 80000 11Be/s @ 41 A.MeV. SPEG Jass

  17. Experimental set-up & results Experimental set-up Neutron angular spectra n-detectors 48Ti 11Be 10Be + n +  @ 41 MeV/A  Our data 11Be Château de cristal 3m 10Be SPEG qlab 1994 data from R.Anne et al., Nucl. Phys. A575 (1994) 125. TDSE calculations M.Fallot et al., Nucl. Phys. A 700 (2001) 70-82. 48Ti 10Be TDSE Calculation Jass

  18. Experimental set-up & results Neutron energy spectra no- S2s = 0,47± 0,04 n-detectors TDSE calc. 2s 48Ti 11Be 10Be + n +  @ 41 MeV/A  11Be Château de cristal 3m incoincidence 10Be S1d= 0,50 ± 0,20 S1p= 3.9 SPEG 4*1p 48Ti 0.5*1d 10Be V.Lima et al., Bormio 2004 V.Lima, Ph.D. Paris XI, oct 2004 V.Lima et al., in preparation TDSE Calculation Jass

  19. The G.S. of 11Be |GS> ~ a |2s1/2  0+> + b |1d5/2  2+> S2s ≈ 85-36% S1d ≈ ?% Transfer reactionp(11Be,10Be)d: GANIL Fortier et al.,PL B 461(1999)22-27 Break-up reactions (11Be,10Be) @ 60 MeV/u and eikonal models T. Aumann et al., P.R.L.84 (2000) 35-38 Break-up reactions (11Be,10Be) @ 520 MeV/u Palit et al., PR. C 68, 034318 (2003) nucl. DWBA excitation and break-up Large diversity of S2s elect. B.Zwieglinski et al. Nucl.Phys.A315, 124 (1979) N.K.Timofeyuk et al. P.R.C59, 1545 (1999) Our work

  20. Nuclear break-up of exotic nuclei • I History of the towing mode in stable nuclei • the 40Ar+58Ni @ 40 MeV/A case • II The TDSE calculation • III The case of the 11Be break-up • IV The extension to borromean nuclei • V Conclusions - Perspectives Jass

  21. Study of neutron correlationswith nuclear break-up 6He is an archetype of a Borromean nucleus ; high intensities most suitable nucleus to investigate new experimental approach and develop new theoretical tools Di-neutron configuration Cigar configuration Zhukov et al., Phys. Rep. 231 (1993) 151 three-body description expansions on hyperspherical harmonics coordinate space Faddeev approach Jass

  22. Some experiments on 6He… • Transfer reactions4He( 6He,6He) 4He • dominated by di-neutron conf… • Yu.Oganessian et al. (1999) : Dao T.Khoa and W.von Oertzen (2004) • Radiative capture 6He(p,)x @ 40 MeV/A - no  + t decay • large distance between the two neutrons… (cigar like) • E.Sauvan et al. (2001) • Coulomb break-up6He + C, Pb @ 30-60 MeV/A • large distance between the two neutrons… (cigar like) • Invariant mass ≠ interferometry … depending on impact parameter cuts… • G.Normand et al. (2004) rn-n 7.7 fm, 9.4 fm • F.M.Marques et al. (2000) rn-n 5.9 fm • @ 240 MeV/A 6,8He + Pb @ 700 MeV/A • L.V.Chulkov et al. (2005) QFS dominates • low lying 1- states 3-6 MeV  core plus 2 or 4 neutrons • 8He = small 6He + 2n No consensus on the n-n configuration Open to more experiments Jass

  23. d/d Large impact parameters Coulomb break-up Small impact parameters Nuclear break-up cigar di-neutron cigar di-neutron n d/d Small differences in relative angles di-neutron cigar n 0° 60° Measure neutrons at large angles Needs a theoretical development 0° 60° Neutron angular emission extension of TDHF (TDDM) (M.Assie-D.Lacroix) Jass G.Normand, PhD thesis 2004 F.M.Marques, PR C64, 2001

  24. Set-up High neutron angular coverage up to 90° : neutron wall + 20 additional detectors Si detector for 4He covering from 5° to 15° Additional neutron detectors n Faraday cup 4He 6He 20 MeV/u 5 mg/cm2 Pb target Si det. n 65° Neutron wall

  25. Nuclear break-up of exotic nuclei • I History of the towing mode in stable nuclei • the 40Ar+58Ni @ 40 MeV/A case • II The TDSE calculation • III The case of the 11Be break-up • IV The extension to borromean nuclei • V Conclusions - Perspectives • Reaction mechanism plays an important role in the break-up • towing Mode, a spectroscopic tool • need of good theoretical description to infer spectroscopic factors • Development required for two-particle wave function evolution • extension of TDHF - Marlène Assié, Denis Lacroix • Possible application to cluster studies! • observation of  emission in 40Ca break-up Jass

More Related