390 likes | 469 Views
@mm CD w#t]y pr]hrN@yq} ym| g#tUvk a#w]v[v @h`w phw aAkyt apv amwn<br>. r`j ]w jyv }r (v]@XS gN ]w p[h[N[) 0718005616 @h` 0343341702 Rajitha Jayaweera (tel:0718005616 or 0343341702) rajithaj74@gmail.com. Exit. Next. INTEGER. n]K]l. gN ] wy
E N D
@mm CD w#t]y pr]hrN@y\q} ym| g#tUvk\ a#w]v[v @h`w\ phw aAkyt apv amwn\n. r`j]w jyv}r (v]@X\S gN]w p[h[N[) 0718005616 @h`\ 0343341702 RajithaJayaweera (tel:0718005616 or 0343341702) rajithaj74@gmail.com Exit Next
INTEGER n]K]l gN]wy r`j]w jyv}r (v]@X\S gN]w p[h[N[) 0718005616 @h`\ 0343341702 Next Exit
r`j]w jyv}r • XY} Er~mk}r~w] p]r]@vn • @p`l\vw\w pAsl • @k`l\l[p]t]y • @k`LB 03 • 0718005616 @h`\ 0343341702 Exit Next
r`j]w jyv}r • l[m|b]N] • @kt]v]\\l vw\w • n`@g`d • kUwr rajithaj74@gmail.com 0718005616 @h`\ 0343341702 Exit Next
n]K]l Integer n]K]l h#Q]n\v}m Introduction of integers n]K]l ekw; k]r}mAddition of integers n]K]l ad[ k]r}m Subtraction of integers n]K]l g;N k]r}m Multiplication of integers n]K]l @bq}m Division of integers Exit
n]K]l h#Q]n\v}m Introduction of integers En @h`\ M^N s]yU p{r~N sAK&` n]K]l yn[@vn\ hÀ[n\vy] uq` ......-3,-2,-1,0,1,2,3,...... pYE`n@mn[v
n]K]l ekw; Addition of integers (1) sm`n lk;N sh]w n]K]l ekw; k]r}m (2) asm`n lk;N sh]w n]K]l ekw; k]r}m pYE`n@mn[v
(1) sm`n lk;N sh]w n]K]l ekw; k]r}m sm`n lk;N sh]w n]K]l ekw; k]r}@m|q} agyn\ ekw; kr em lk;Nm @y`qn\n. pYE`n@mn[v g#tU
sm`n lk;N sh]w n]K]l ekw; k]r}m (1) (+2) + (+3) (2) (-5) + (-3) (3) (-4) + (-8) (4) (-5) + (-2) + (-2) p]L]w;r p]L]w;r p]L]w;r p]L]w;r pYE`n@mn[v
(1) (+2) + (+3)= (+5) @h\w;v pYE`n@mn[v
(2) (-5) + (-3) =(-8) @h\w;v pYE`n@mn[v
(3) (-4) + (-8) =(-12) @h\w;v pYE`n@mn[v
(4) (-5) + (-2) + (-2) =(-7) + (-2) =(-9) @h\w;v pYE`n@mn[v
(2) asm`n lk;N sh]w n]K]l ekw; k]r}m asm`n lk;N sh]w n]K]l ekw; k]r}@m|q} v]X`l ag@yn\ k;d` agy ad[kr v]X`l agy iq]r]@y\ a#w] lk;N @y`qn\n. g#tU pYE`n@mn[v
asm`n lk;N sh]w n]K]l ekw; k]r}m (1) (-5) + (+2) (2) (+8) + (-3) (3) (-7) + (+4) p]L]w;r p]L]w;r p]L]w;r pYE`n@mn[v
(-5) + (+2) = (-3) @h\w;v pYE`n@mn[v
(2) (+8) + (-3) =(+5) @h\w;v pYE`n@mn[v
(3) (-7) + (+4) =(-3) @h\w;v pYE`n@mn[v
n]K]l ad[ k]r}m Subtraction of integers • (1) @mh]q} pLm[vad[ k]r}m ekw;vk\ @ls l]yn\n • (2) enm| ad[ k]r}m @vn[vt+ lk;n @y`q` It p]t[ps a#w] n]K]l@y\ lk;N m`r# krn\n. • (3) q#n\ n]K]l ekw; krn a`k`ryt n]K]l vl lk;n sm`nq asm`nq#y] bln\n. • (4) lk;N[ sm`n nm| agyn\ ekw; kr em lk;Nm @y`qn\n • (5) lk;N[ asm`n nm| v]X`l ag@yn\ k;d` agy ad[kr v]X`l agy iq]r]@y\ a#w] lk;N @y`qn\n. uq` pYE`n@mn[v ax&`s
phw n]K]lekw;vk\ @ls l]v}m • uq` 2 - (-3) • = 2 + (+3) pYE`n@mn[v g#tU
phw n]K]lekw;vk\ @ls l]yn\n. (1) (-3) - (+2) (2) (+4) - (-1) (3) (+5) - (+3) p]L]w;r p]L]w;r p]L]w;r pYE`n@mn[v
(1) (-3) - (+2) • = (-3) + (-2) pYE`n@mn[v
(2) (+4) - (-1) = (+4) + (+1) pYE`n@mn[v
(3) (+5) - (+3) = (+5) + (-3) pYE`n@mn[v
n]K]l g;N k]r}mMultiplication of integers n]K]l g;N k]r}@m|q} pLm[v agyn\ g;Nkr phw pr]q] lk;N[q g;Nkr l]yn\n. (+) x (+) = (+) (-) x (-) = (+) (+) x (-) = (-) (-) x (+) = (-) ax&`s pYE`n@mn[v
phw n]K]l g;N krn\n. p]L]w;r (1) (+2) x (-5) (2) (-3) x (-5) (3) (-4) x (+6) (4) (-3) x (-8) x 0 (5) 2 x (-4) x 3 (6) (-5) x 3 x (-1) p]L]w;r p]L]w;r p]L]w;r p]L]w;r p]L]w;r pYE`n@mn[v
(1) (+2) x (-5) = (-10) pYE`n@mn[v
(2) (-3) x (-5) = (+15) pYE`n@mn[v
(3) (-4) x (+6) = (-24) pYE`n@mn[v
(4) (-3) x (-8) x 0 =24 x 0 = 0 pYE`n@mn[v
(5) 2 x (-4) x 3 • =(-8) x 3 • =(-24) pYE`n@mn[v
(6) (-5) x 3 x (-1) = (-15) x (-1) = 15 pYE`n@mn[v
n]K]l @bq}m Division of integers n]K]l @bq}@m|q}} pLm[v agyn\ @bq` phw pr]q] lk;N[q @bq` l]yn\n. (+) ÷ (+) = (+) (-) ÷ (-) = (+) (+) ÷ (-) = (-) (-) ÷ (+) = (-) ax&`s pYE`n@mn[v
phw n]K]l @bqn\n. (1) (-12) ÷ 2 (2) (-18) ÷ (-3) (3) (+21) ÷ 7 (4) (+48) ÷ (-6) (5) (+25) ÷ (-5) p]L]w;r p]L]w;r p]L]w;r p]L]w;r p]L]w;r pYE`n@mn[v
(1) (-12) ÷ 2 • = (-6) @h\w;v pYE`n@mn[v
(2) (-18) ÷ (-3) • = (+6) @h\w;v pYE`n@mn[v
(3) (+21) ÷ 7 =(+3) @h\w;v pYE`n@mn[v
(4) (+48) ÷ (-6) =(-8) @h\w;v pYE`n@mn[v
(5) (+25) ÷ (-5) =(-5) @h\w;v pYE`n@mn[v