400 likes | 417 Views
Explore the properties, naming conventions, and uses of halocarbons, alcohols, and ethers as organic compounds. Learn about functional groups, intermolecular forces, and the unique characteristics of each derivative in this informative guide.
E N D
Hydrocarbon Derivatives: Halocarbons, Alcohols, & Ethers
Hydrocarbons • Contain only carbon & hydrogen • But carbon can form strong covalent bonds to other elements, incl. O, N, F, Cl, Br, I, S, & P
Functional Group • One or more H’s in a hydrocarbon can be replaced by an atom or group of atoms. • An atom or group of atoms in an organic molecule that always behaves in the same way is called a functional group. • Adding a functional group changes the chemical & physical properties in specific ways, depending on the functional group.
Intermolecular Forces • Determine Boiling Point & Solubility • Van der Waals or dispersion – nonpolar – weakest. • Dipole-dipole – intermediate. Molecule must have atoms with different electronegativities & not arranged symmetrically. • Hydrogen bonding – strongest. Molecules must contain H bonded to F, O, or N. Memory Jogger
Halocarbons Alcohols Ethers Amines Aldehydes Ketones Carboxylic Acid Ester Amide Amino Acid Functional Groups
Functional Group #1 Halocarbons
Organic Halides • One or more of the hydrogen atoms in an alkane is replaced with a halogen (F, Cl, Br, or I). • Not hydrocarbons! Often called halocarbons or alkyl halides.
Naming Halides • Figure out the base name. • Use prefixes to specify substituent: fluoro, chloro, bromo, iodo • If more than one, use di, tri, etc. to specify # of substituents. • If necessary, give locations of halogens by numbering C-atoms in backbone.
CH3Cl CH3CHFCH3 H H H H–C–C–C–H H F H H H–C–Cl H 2-fluoropropane chloromethane C3H7F
Naming Halides CH3CCl2CHClCH3 H Cl H H H – C – C – C – C– H H Cl Cl H 2,2,3-trichlorobutane C4H7Cl3
Ranking Halogens • If more than 1 kind of halogen atom, list them alphabetically. • Chain is numbered to give lowest number to halogen that comes first in alphabet.
Different Halogens 4 3 2 1 Chlorine is 1st alphabetically, so it determines numbering. 2-chloro-4-fluoro-3-iodobutane
Name: Br CH3CH2CHCHCH3 I 3-bromo 2-iodo pentane F Cl HCCH F Cl 1,1-dichloro-2,2-difluoroethane
Properties of Halocarbons • For an alkane & an alkyl halide of similar size & shape, the alkyl halide has the higher boiling point & higher density. Why? • CH4: bp = -162C & density = 0.423 g/ml • CH3Cl: bp = -24C & density = 0.911 g/ml Stronger intermolecular forces. What intermolecular forces for CCl4?
Inc Inc
Uses of Alkyl Halides • Cleaners & solvents • Teflon & PVC’s are alkyl halides. • Refrigerants. (used to be chlorofluorocarbons. Now hydrofluorocarbons.) • Starting materials in many reactions.
Halogen Derivatives • CH3Cl = local anesthetic • CHCl3 = solvent, general anesthetic • CHI3 = antiseptic • CCl4 = dry cleaning solvent • CF2Cl2 = refrigerant • Fluorocarbons = teflon, lubricants, synthetic blood • Chlorofluorocarbons = aerosol propellants, refrigerants
Table R • General Formula for halocarbons: R-X • R represents the entire hydrocarbon part of the molecule. (The alkyl part.) • X represents the halogen (F, Cl, Br, or I).
Functional Group #2 Alcohols
Alcohols • An –OH group replaces a H in a hydrocarbon. • The –OH group is called the hydroxyl group. -OH H HCOH H H HCH H
Alcohols are nonelectrolytes! • The hydroxyl group resembles the hydroxide ion of inorganic bases, but it does not form ions in water! • The hydroxyl group is polar. So alcohols are soluble in water.
Naming AlcohOLs • Based on alkane name. • Name the parent chain. • Drop the –e and add –OL. • If the parent chain has 3 or more C atoms, number the C’s & give the location of the –OH group.
Naming H H H H HCCCCH OH H H H H H H H HCCCCH H OH H H 1-Butanol bp = 100C 2-Butanol Bp = 115C Note: Never more than 1 –OH group per C
More than 1 hydroxyl group • Prefixes di-, tri-, tetra- used before the –ol ending to tell the # of hydroxyl groups. • So don’t drop the -e from the alkane name. • These hydroxyls are on different C atoms!
Classifying Alcohols • By # of hydroxyl groups • Monohydroxy: 1 hydroxyl group • Dihydroxy: 2 “ “ • Trihydroxy: 3 “ “ • By position of each hydroxyl group on main carbon chain.
Monohydroxy Alcohols • Primary: hydroxyl group attached to end C of chain or branch. • Secondary: hydroxyl group attached to C in a chain – C is bonded to 2 other C’s. • Tertiary: hydroxyl group attached to C at a branch point – C is bonded to 3 other C’s.
H H H H H-C-C-C-C-O-H H H H H 1-butanol primary H H H H H-C-C-C-C-H H H O H H 2-butanol secondary Monohydroxy
H H-C-H H H H-C-C-C-H H O H H 2-methyl 2-propanol Tertiary Monohydroxy
H H H-C-C-H O O H H H H H H-C-C-C-H O O O H H H Dihydroxy Trihydroxy
Properties of Alcohols • Contain a H bonded to an O atom. • Therefore Hydrogen Bonding occurs. • Alcohols have a higher boiling point than the corresponding alkane. • Like dissolves Like. Alcohols tend to be very soluble in water.
R - O R - H O + H +
Which compound has the highest boiling point? • CH4 • C2H6 • C3H8 • C3H7OH Correct response = D.
Table R • General Formula for Alcohols: ROH. • R represents the entire hydrocarbon part of the molecule. • OH is the hydroxyl group.
Functional Group #3 Ethers
Ethers • General formula is ROR where R may or may not be the same as R. • R and R are hydrocarbon branches. • O is an oxygen bridge. • Ethers are not linear. They are bent, like water.
Properties of Ethers • In a pure ether, no hydrogen bonding – no H bonded to O. Do have weak dipole-dipole interactions – bent, like H2O. • Dipole-dipole interactions are between dispersion forces & hydrogen bonding. • Ethyl ether once used as anesthesia
Properties of Ethers • Compared to alkanes: • Higher boiling pts than similar alkanes. • More soluble in water than alkanes. • Compared to alcohols: • Lower boiling pts than similar alcohols. • Much less soluble in water than alcohols.
Naming Ethers • If the 2 hydrocarbon branches are identical, name the branch (once) & add the word ether. • If the 2 branches are different, list them in alphabetical order followed by the word ether.
H H HCOCH H H Methyl Ether H H H H H H HCCCOCCCH H H H H H H Propyl Ether
H H H H HCOCCCH H H H H Methylpropyl Ether