560 likes | 678 Views
Present SA performance vs. AdV & ET Specs S.Braccini for Virgo Suspension group. Passive Attenuation. 2 Hz. Long Pendula. Ground. Resonances. f -2N. Transmission. Frequency (Hz). Soft Springs. Mirror. Magnetic Antisprings. 8 m. Blade Springs. Rumore Termico.
E N D
Present SA performance vs. AdV & ET SpecsS.Braccini for Virgo Suspension group
2 Hz Long Pendula Ground Resonances f-2N Transmission Frequency (Hz) Soft Springs Mirror
Magnetic Antisprings 8 m Blade Springs
Rumore Termico Ground Seismic Noise Mirror Seismic Noise
TFmax = DL(f) /(LSD Ground Seismic Noise) LSD Ground Seismic Noise = 5 x 10 -7/ f 2
TFmax = DL(f) /(LSD Under-Ground Seismic Noise) LSD Ground Seismic Noise (Kamioka) - 5 x 10 -9/ f 2 (Duzel Mine much better)
TFmax = DL(f) /(LSD Ground Seismic Noise) LSD Ground Seismic Noise (Kamioka) - 5 x 10 -9/ f 2
SA design e freccette Filter Chain TF measurements (without Pre-Isolator !)
SA design e freccette CITF Measurements around 2, 4, 9 Hz @ 4.1 Hz < 6 ×10e-8
SA design e freccette CITF Measurements around 2, 4, 9 Hz @ 2.25 Hz 5 ×10e-6
High Sens Range Larger stability allows longer measurements
Displacement (m .Hz-1/2) Transfer Function < 10-10 SA design e freccette Top frequency (Hz) Mirror
TF < 1.7 x 10-12 TOP 1.2 x 10-6m Hz-1/2 MIRROR Stressed Measurement T = 41943 s High Sens Range 2 x 10-18m Hz-1/2
AdV ET-Xylophone 1.26 x 10-11 + Pre-Isolator
SA design e freccette SA design e freccette Possible Bypass X-excitation
X - Excitation Results Bypass Indication ?
Red = Line Detected Blue = Line Not Detected Purple = Upper Limit not useful (too large)
Upper Limit Detected 53 113 AdV ET-Xylophone IP Guarantees for this ! Already compliant for ET (Remind that we are speaking of Upper Limits !) Without Pre-Isolator (Just filter chain !)
Vertical TF measurements (Coupling included in the measurement)
Vertical Upper Limit Vertical Detected 60 AdV ET-Xylophone F0 Guarantees for this UPPER LIMIT (!) compliant for ET Without Filter Zero (Just filter chain !)
Preisolator makes safety margin wide in AdV
SA are compliant also for ET starting from 4 Hz.... What happens below?
HORIZONTAL @ 2.25 Hz 5 ×10e-6 Remarkable Attenuation also at 2.25 Hz
VERTICAL @ 2.25 Hz 1.5 ×10e-6 Remarkable Attenuation also at 2.25 Hz
Stage by Stage Measurement (and Model) TF Model Meas. No Maybe Yes 2 3 4 f
ET Design Programme Cut-off 3-4 Hz No Design Study Cut-off 1-2 Hz Design Study SCIENCE CASE & NEWTONIAN NOISE TO BE DISCUSSED AT ERICE MEETING
N 1 Hz 2 Hz ------------------------- {3, 1.6*10-7, 5.4*10-10} {4, 4.8*10-8, 3.3*10-11} {5, 2.6*10-8, 3.4*10-12} {6, 2.3*10-8, 6.7*10-12} {7, 2.1*10-8, 2.6*10-12} Optimized at 1Hz Courtesy G. Cella ~50 m Horizontal G.Cella
V V V V 0.2 0.2 Magnete Bobina -0.2 -0.2 Lunghezza cavità l/100 Locking
M g PendoloInvertito GiuntoFlessibile 30 mHz
Accelerometers RESIDUAL SWING < 0.1 mm DSP DAC Actuators ADC
Motors Sensors Coil Drivers Sensors Coil Drivers Sensors Coil Drivers Superattenuatore • Acc. Sens: • -10-9 m/s2 • 0 – 100Hz • f.s. 1g Control Electronics System Position & Damping • DSP: • 96 bit • - 60 MFLOPs • DAC: • -8 Chan. • 20 bit • 500 KHz • ADC: • -8 Chan. • 16 bit SAR • - 200 KHz
MIRRORACTUATION WIND SEA
Direct Measurement on the ITF !! A.Gennai (VIR 029-A09)
Distribution and (its integral) of the maximum of the absolute values of marionetta correction voltage computed on 200 s-long interval (all VSR1 run, itf in science mode)