1 / 49

The Tully-Fisher Relation: Across Morphological Types and Redshift

The Tully-Fisher Relation: Across Morphological Types and Redshift. Martin Bureau , Oxford University. Stellar: Michael Williams, Michele Cappellari CO: Timothy Davis, Lisa Young, Katey Alatalo, Leo Blitz Atlas 3D Team NANTEN2: Kazafumi Torii, Satoshi Yoshiike, Selçuk Topal, Yasuo Fukui,

lis
Download Presentation

The Tully-Fisher Relation: Across Morphological Types and Redshift

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. The Tully-Fisher Relation: Across Morphological Types and Redshift Martin Bureau, Oxford University Stellar:Michael Williams, Michele Cappellari CO:Timothy Davis, Lisa Young, Katey Alatalo, Leo Blitz Atlas3D Team NANTEN2:Kazafumi Torii, Satoshi Yoshiike, Selçuk Topal, Yasuo Fukui, NANTEN2 consortium KMOS:Sarah Miller, Mark Sullivan, Roger Davies, UK KMOS consortium Plans:Galaxy formation, scaling relations, T-F relation Stellar T-F: data, modeling, Vc , S0-S evolution CO T-F: data, Vc biases, prospects High-z: local benchmarks, ALMA, VLT/KMOS Summary

  2. The Tully-Fisher Relation: Across Morphological Types and Redshift Martin Bureau, Oxford University Stellar:Michael Williams, Michele Cappellari CO:Timothy Davis, Lisa Young, Katey Alatalo, Leo Blitz Atlas3D Team NANTEN2:Kazafumi Torii, Satoshi Yoshiike, Selçuk Topal, Yasuo Fukui, NANTEN2 consortium KMOS:Sarah Miller, Mark Sullivan, Roger Davies, UK KMOS consortium Plans:Galaxy formation, scaling relations, T-F relation Stellar T-F: data, modeling, Vc , S0-S evolution CO T-F: data, Vc biases, prospects High-z: local benchmarks, ALMA, VLT/KMOS Summary

  3. Hubble Sequence (spheroid) SAa SAb SAc SAd Mass, velocity dispersion, L-weighted age, density Irr S0 (Astronomy 01) E3 E1 E7 Gas fraction, rotation, SF SBc (disk) SBa SBb SBd

  4. Broad Aims Goals: • Mass assembly history (gas, stars, dark matter) • Chemical enrichment history (age, metallicity, SFH) Context: • Hierarchical structure formation (merging, harassment, ...) • Internal dynamical evolution (BH/triaxiality-driven, ...) ⇒ Exploit "fossil record" (near-field cosmology) (HST HDF) (SINS)

  5. Scaling Relations (correlations) Stellar Evolution: • Colour - mag. diagram (CMD) • UVX - Mg relation Galaxy Evolution: • Colour - mag. diagram (CMD) • Fundamental plane (FP) Star Formation: • Far infrared - radio correlation • Kennicutt - Schmidt law (K-S) Underlying Physics: • M/L - velocity dispersion • Dark - visible matter (Micela et al. 88) (Blanton et al. 06) (Combes et al. 07)

  6. Tully-Fisher: Definition Definition: • Originally, optical luminosity (magnitude) vs. HI linewidth • (corrected for disk inclination) • Generally, any luminosity • (stellar mass) vs. any rotational velocity (total mass) • ⇒ Luminous vs. dark matter Uses: • Distance determination • (H0, peculiar velocity field, …) • ⇒ M/L evolution with z (and type) • (zero-point and scatter) Lum. (Bureau et al. 96) V/sin i

  7. Tully-Fisher: M/L evolution Scaling: • We have: • G M / R2 = V2 / R • M α V2 R • We define: • M/L • Σ = M / πR2 • We get: • L = V4 / πG2 (M/L) Σ • L α V4(M/L)-1 Σ-1 M/L: • Stellar populations • - Age • - Metallicity • - Non-Solar abundance ratio • - Star formation history (SFH) • - Initial mass function (IMF) • - … • Dark matter • Size scale • … • (Gas-rich) disk galaxies

  8. Tully-Fisher: Tracers

  9. Stellar + CO T-F: Goals Goals: • M/L evolution • Constraints on galaxy formation through zero-point and scatter • Probe E-S0-S interface • (stellar pops, DM, structure) • Constrain E-S0-S evolution • Identical treatment of E/S0/S • (avoid systematic biases) E - S0 - S continuity:

  10. The Tully-Fisher Relation: Across Morphological Types and Redshift Martin Bureau, Oxford University Stellar:Michael Williams, Michele Cappellari CO:Timothy Davis, Lisa Young, Katey Alatalo, Leo Blitz Atlas3D Team NANTEN2:Kazafumi Torii, Satoshi Yoshiike, Selçuk Topal, Yasuo Fukui, NANTEN2 consortium KMOS:Sarah Miller, Mark Sullivan, Roger Davies, UK KMOS consortium Plans:Galaxy formation, scaling relations, T-F relation Stellar T-F: data, modeling, Vc, S0-S evolution CO T-F: data, Vc biases, prospects High-z: local benchmarks, ALMA, VLT/KMOS Summary

  11. Stellar T-F: Sample, data • Sample: • 28 edge-on disk galaxies: • 14 S0, 14 Sa-Sc • Mostly bright, HSB, field objects • (Bureau & Freeman 1999) • K-band images • (Bureau et al. 06) • Stellar kinematics (2-3 Re) • (Chung et al. 04) • ⇒ Inclination known, need to derive (corrected) rotation velocity Stellar kinematics:(V, σ, h3, h4) (Chung et al. 04) v σ h3 h4 vrms = √(v2 + σ2)

  12. Stellar T-F: Modeling method Luminous MGE model: • Multi-Gaussian expansion of image (incl. negative terms) • ⇒ Radially constant M/L* free • Dark NFW halo: • Assumed mass-concentration relation • ⇒ Dark halo virial mass MDM free • JAM dynamical model: • Jeans axisymmetric modeling • ⇒ Radially constant orbital anisotropy βz free JAM: MDM M/L* (Williams et al. 09) * Rotation dominant (esp. in outer parts), so anisotropy effects unimportant (mass-anisotropy degeneracy minimised)

  13. Stellar T-F: Velocity measure • Velocities: • Need single measure of velocity • Flat (or asymptotic) velocity • Systematics: • Past works compare modeled Vcirc (or Vdrift) of S0s with HI line widths for Ss: significant biases • ⇒ Here, compare Vcirc with Vcirc Velocity definition: (Williams et al. 10) V (km s-1) R (arcsec)

  14. Stellar T-F: Velocity measure • Velocities: • Need single measure of velocity • Flat (or asymptotic) velocity • Systematics: • Past works compare modeled Vcirc (or Vdrift) of S0s with HI line widths for Ss: significant biases • ⇒ Here, compare Vcirc with Vcirc Velocity comparisons: Vcirc - Vdrift S0 S S0 (Bedregal et al. 06) VHI - Vdrift (Williams et al. 10)

  15. Stellar T-F: Velocity measure VLA+ATCA: • Velocities: • Need single measure of velocity • Flat (or asymptotic) velocity • Systematics: • Past works compare modeled Vcirc (or Vdrift) of S0s with HI line widths for Ss: significant biases • ⇒Here, compare Vcirc with Vcirc (Chung et al. 06, 12)

  16. Stellar T-F: S0 vs Sab S0 vs Sab: • Large offset to Sc-Sd T-F relation for both S0 and Sab • S0 fainter than Sab by • 0.50 ± 0.15 mag at K (identical treatment) • (smaller than previous studies) • Evolution: • Fading timescale ≈1 Gyr, • but S0 up to z≈1 • ⇒ Passive evolution(exclusively) ruled out T-F relation:K-band (14 S0 + 14 Sa-Sc, mostly field spirals) (K-band; 2-3 Re stellar kinematics) S0 S (Williams et al. 10)

  17. Baryonic T-F: S0 vs Sab Baryonic and “total” T-F: • S0 and Sab still slightly offset when considering stellar mass • (0.2 dex) (worse if gas added) • S0 – Sab offset unchanged for dynamical mass • (although Mdyn rather uncertain) • If S0 – Sab Mdyn offset is true, then “broken homology” • (S0 more compact by 20%) • ⇒ S0 not simply S fading… • dynamical “processing” • required T-F relation:M* and Mdyn M* S0 S Mdyn (Williams et al. 10)

  18. Baryonic T-F: S0 vs Sab Baryonic and “total” T-F: • S0 and Sab still slightly offset when considering stellar mass • (0.2 dex) (worse if gas added) • S0 – Sab offset unchanged for dynamical mass • (although Mdyn rather uncertain) • If S0 – Sab Mdyn offset is true, then “broken homology” • (S0 more compact by 20%) • ⇒ S0 not simply S fading… • dynamical “processing” • required T-F relation:M* and Mdyn M α V2 R M α V4(M/L)-1 Σ-1

  19. The Tully-Fisher Relation: Across Morphological Types and Redshift Martin Bureau, Oxford University Stellar:Michael Williams, Michele Cappellari CO:Timothy Davis, Lisa Young, Katey Alatalo, Leo Blitz Atlas3D Team NANTEN2:Kazafumi Torii, Satoshi Yoshiike, Selçuk Topal, Yasuo Fukui, NANTEN2 consortium KMOS:Sarah Miller, Mark Sullivan, Roger Davies, UK KMOS consortium Plans:Galaxy formation, scaling relations, T-F relation Stellar T-F: data, modeling, Vc , S0-S evolution CO T-F: data, Vc biases, prospects High-z: local benchmarks, ALMA, VLT/KMOS Summary

  20. CO T-F

  21. CO T-F

  22. Possible Pitfalls: CO may not extend to flat part of rotation curve Geometry and inclination ill-defined CO-rich populations unrepresentative of general galaxy population (biased) … CO T-F: Caveats and pitfalls (Young et al. 11) (Young et al. 11)

  23. Sample selection: MK < -21.5 D < 41 Mpc |δ – 29º| < 35º , |b| > 15º All E/S0s, no spiral structure Data: SAURON optical wide-field IFU SDSS/INT optical + 2MASS NIR imaging IRAM 30m CO (1-0)+(2-1) + CARMA CO (1-0) follow-up WSRT HI (δ > 10º, excl. Virgo) Various archives (XMM, Chandra, GALEX, HST, Spitzer, …) CO T-F: Atlas3D survey Red Blue Atlas3D g-r (Cappellari et al. 11) Mr ⇒ 260 galaxies

  24. CO T-F: Single-dish survey IRAM 30m Survey: • CO(1-0,2-1), 23/12” FWHM • 260 Atlas3D E/SOs • Sensitivity: 3 mK (30 km s-1) 3 x 107 M⊙ Results: • 22% detection rate • MH2 = 107.1-9.3 M⊙ • CO(2-1)/CO(1-0) ≈ 1 - 2 • Largely independent of: • luminosity, dynamics (λR), • environment (Virgo), … High S/N: Low S/N: (Combes, Young & Bureau 07; Young et al. 11)

  25. CO T-F: Single-dish survey IRAM 30m Survey: • CO(1-0,2-1), 23/12” FWHM • 260 Atlas3D E/SOs • Sensitivity: 3 mK (30 km s-1) 3 x 107 M⊙ Results: • 22% detection rate • MH2 = 107.1-9.3 M⊙ • CO(2-1)/CO(1-0) ≈ 1 - 2 • Largely independent of: • luminosity, dynamics (λR), • environment (Virgo), … Optical CMD + CO: (Young et al. 11, 13)

  26. CO T-F: Inclination measures Stellar: • Galaxy axis ratio • (intrinsic thickness; c/a=0.34) • JAM best-fit inclination (Molecular) Gas: • Unsharp-masked image • ellipse fitting • Tilted-ring model best-fit inclination • ⇒ Error not strongly dependent on inclination Stellar i : (Davis et al. 11a) (Cappellari et al. 10)

  27. CO T-F: Inclination measures Atlas3D (CARMA): • H2 and stars often misaligned: • ≥1/3 external (accretion/cooling) • ≤2/3 internal (stellar mass loss) • Always aligned in clusters • Randomly misaligned in field • ⇒ Increased scatter (and bias) • in field ? (Alatalo et al. 12) H2 - stars (Davis et al. 11b) Misalignment angle

  28. CO T-F: Inclination measures Stellar: • Galaxy axis ratio • (intrinsic thickness; c/a=0.34) • JAM best-fit inclination (Molecular) Gas: • Unsharp-masked image • ellipse fitting • Tilted-ring model best-fit inclination • ⇒ Error not strongly dependent on inclination (Molecular) gas i : (Davis et al. 11a) (Cappellari et al. 10)

  29. CO T-F: Velocity measure Selection: • Double-horn profiles likely to reach Vflat • (imperfect diagnostic) • CO traces Vflat globally • (not Vpeak) • CO traces the circular velocity locally • ⇒ CO excellent kinematic tracer Integrated profiles : (Young et al. 11)

  30. CO T-F: Velocity measure CO vs. Ionised Gas: • CO rotating faster (colder) then ionised gas • (and stars) • Nearly perfect tracer of the circular velocity • Better (and excellent) tracer of dynamical mass • : BIMA CO (1-0) --- : SAURON JAM model + : SAURON stars + : SAURON ionised gas (Davis et al. 12)

  31. CO T-F: Results CO Tully-Fisher: • Many (potential) pitfalls • Many better than expected • Many simple workarounds • Slope and zero-point • robustly recovered • Standard intrinsic scatter • ⇒ Stellar / Jeans T-F • easily recovered • ⇒ No or minimum efforts ! • ⇒ Great prospect to probe • M/L(z) with LMT+ALMA… CO Tully-Fisher relations: (Davis et al. 11a)

  32. CO T-F: Results ETG/FR vs Sc: • Sc follow spirals in HI • ETG/FR fainter than Sc by 1.0 ± 0.1 mag at K-band • (identical treatment) • Consistent with Williams et al.’s 0.5 mag at K-band offset for Sab • (consistent with past work) • ⇒ CO T-F easily recovered across all Hubble types • (and environments) CO Tully-Fisher relations: (Chung et al., in prep)

  33. CO T-F

  34. CO T-F

  35. The Tully-Fisher Relation: Across Morphological Types and Redshift Martin Bureau, Oxford University Stellar:Michael Williams, Michele Cappellari CO:Timothy Davis, Lisa Young, Katey Alatalo, Leo Blitz Atlas3D Team NANTEN2:Kazafumi Torii, Satoshi Yoshiike, Selçuk Topal, Yasuo Fukui, NANTEN2 consortium KMOS:Sarah Miller, Mark Sullivan, Roger Davies, UK KMOS consortium Plans:Galaxy formation, scaling relations, T-F relation Stellar T-F: data, modeling, Vc , S0-S evolution CO T-F: data, Vc biases, prospects High-z: local benchmarks, ALMA, VLT/KMOS Summary

  36. CO T-F: Local benchmark Existing work: • Number of studies and objects limited • (Dickey, Lavezzi, Sofue, Tutui, …) • Large single dishes or interferometry • ⇒ Non-optimal datasets • ⇒ Hard to compare with future high-z work CO Tully-Fisher relations: (Lavezzi & Dickey 1998) (Schoeniger & Sofue 1997) (Dickey & Kazes 1992)

  37. CO T-F: Local benchmark NANTEN2: • 4m mm/sub-mm dish, Atacama • CO(1-0) + (2-1) receivers • (1 GHz ≈ 2600 km s-1 bandwidth) • (61 kHz ≈ 0.15 km s-1 resolution) • Small consortium • ⇒ Large beam, 170” at CO(1-0) • (entire galaxies) • ⇒ Extensive, flexible scheduling NANTEN2:

  38. CO T-F: Local benchmark Nearby galaxy survey: • Pilot observations: • - 30+ galaxies observed • (≈40 min on-source; • single pointing) • - Mosaics straightforward • (few attempted) • Full survey: • - 250+ “full” galaxies (≈3 yrs) • - Preferably no CO detection, • (non-TF) accurate distance • ⇒ z = 0 benchmark • (star formation, gas-to-dust ratio, …) NANTEN2: (Yoshiike et al., in prep)

  39. CO T-F: Local benchmark Nearby galaxy survey: • Pilot observations: • - 30+ galaxies observed • (≈40 min on-source; • single pointing) • - Mosaics straightforward • (few attempted) • Full survey: • - 250+ “full” galaxies (≈3 yrs) • - Preferably no CO detection, • (non-TF) accurate distance • ⇒ z = 0 benchmark • (star formation, gas-to-dust ratio, …) NANTEN2: (Yoshiike et al., in prep)

  40. CO T-F: Intermediate z ALMA: • 50 x 12m dishes to 16 km • 12 x 7m dishes compact array • 4 x 12m dishes total power • 10 bands, 30 - 950 GHz • (bands 3, 6, 7, 9: cycles 0+1) • (bands 4, 8, 10: in progress) • (bands 1, 2, 5: ???) • ⇒ Detect CO or CII in MW-like galaxy at z = 3 in 24 hr • (z = 1 in 1 hr?) • LMT + GBT promising ALMA:

  41. CO T-F: Intermediate z ALMA: • CO(1-0): Band 3: z = 0.0 – 0.4 • Band 2: z = 0.3 – 0.7 • Band 1: z = 1.6 – 3.7 • CO(2-1): Band 6: z = 0.0 – 0.1 • Band 5: z = 0.1 – 0.4 • Band 4: z = 0.4 – 0.8 • Band 3: z = 1.0 – 1.7 • Band 2: z = 1.6 – 2.4 • Band 1: z = 4.1 – 6.4 • ⇒ Great T-F machine • (spatially-resolved or not) • ⇒ Need better understanding • of CO(2-1) ALMA: Spiral at z = 0.0, optical, CO(2-1), cont. + CO(6-5) (ESO) QSO at z = 4.4, CII 158 μm (unresolved) (ESO)

  42. CO T-F: Intermediate z ALMA: • CO(1-0): Band 3: z = 0.0 – 0.4 • Band 2: z = 0.3 – 0.7 • Band 1: z = 1.6 – 3.7 • CO(2-1): Band 6: z = 0.0 – 0.1 • Band 5: z = 0.1 – 0.4 • Band 4: z = 0.4 – 0.8 • Band 3: z = 1.0 – 1.7 • Band 2: z = 1.6 – 2.4 • Band 1: z = 4.1 – 6.4 • ⇒ Great T-F machine • (spatially-resolved or not) • ⇒ Need better understanding • of CO(2-1) CARMA: (EGNoG survey: spirals at z = 0.3) (Bauermeister et al. 13)

  43. Hα T-F: Local benchmark Existing work: • Large number of (long-)slit spectroscopic studies • (Mathewson et al., Courteau, …) • Few integral-field studies (IFU, Fabry-Perot, …) • Environment independent, • excellent “beam” • ⇒ Datasets available • ⇒ IFU groundwork incomplete • (simulate higher z IFU work) Hα Tully-Fisher relations: (C. Flynn) (EGG, Cornell U.)

  44. Hα T-F: Local benchmark Existing work: • Large number of (long-)slit spectroscopic studies • (Mathewson et al., Courteau, …) • Few integral-field studies (IFU, Fabry-Perot, …) • Environment independent, • excellent “beam” • ⇒ Datasets available • ⇒ IFU groundwork incomplete • (simulate higher z IFU work) Hα velocity fields: (Chemin et al. 2005) (Epinet et al. 2009)

  45. Hα T-F: Intermediate z VLT KMOS: KMOS: • 2nd generation VLT instrument • 24 deployable IFUs over 7.2’ FOV • (2.8” x 2.8”, 14 x 14 spaxels) • JHK bands, R ≈ 3500 • UK: Durham, Oxford, UKATC • Germany: MPE, Munich Obs, ESO • 250 GTO nights, 120 for UK • ⇒ Galaxy evolution from z = 1 to 10 (SFH, K-S, mergers, Mdyn, …) (MPE)

  46. Hα T-F: Intermediate z Mid-z galaxy survey: KMOS UK GTO: • Large z = 0.5 - 3.0 survey • (Oxford, Durham?, MPE?) • Pilot: ≈20-30 objects per bin • 3 redshifts (0.8, 1.5, 2.4) • 2 morphological bins • Total: ≈1000 galaxies ? • CANDELS fields • (+ different environments) • ⇒ Adapt current (z = 0) tools • ⇒ Tully-Fisher (galaxy) evolution at intermediate redshifts (Miller et al. 12) (Förster Schreiber et al. 2009)

  47. Hα T-F: Intermediate z Mid-z galaxy survey: KMOS UK GTO: • Large z = 0.5 - 3.0 survey • (Oxford, Durham?, MPE?) • Pilot: ≈20-30 objects per bin • 3 redshifts (0.8, 1.5, 2.4) • 2 morphological bins • Total: ≈1000 galaxies ? • CANDELS fields • (+ different environments) • ⇒ Adapt current (z = 0) tools • ⇒ Tully-Fisher (galaxy) evolution at intermediate redshifts (Koekemoer et al. 2011) (Miller et al. 2011)

  48. The Tully-Fisher Relation: Across Morphological Types and Redshift Martin Bureau, Oxford University Stellar:Michael Williams, Michele Cappellari CO:Timothy Davis, Lisa Young, Katey Alatalo, Leo Blitz Atlas3D Team NANTEN2:Kazafumi Torii, Satoshi Yoshiike, Selçuk Topal, Yasuo Fukui, NANTEN2 consortium KMOS:Sarah Miller, Mark Sullivan, Roger Davies, UK KMOS consortium Plans:Galaxy formation, scaling relations, T-F relation Stellar T-F: data, modeling, Vc , S0-S evolution CO T-F: data, Vc biases, prospects High-z: local benchmarks, ALMA, VLT/KMOS Summary

  49. T-F Conclusions HI:- Trivial locally for late-type galaxies ⇒ Only exceptionally in early-types, high-density environments ⇒ Impossible to mid-z until SKA Stars:- JAM successful; m2 good tracer of enclosed mass; Vcirc reliable ⇒ Possible for all morphological types, environments ⇒ Always time-consuming, impossible beyond local universe CO:- Limited work locally; needs to be expanded ⇒ Possible for all morphological types, environments ⇒ Routine to intermediate z with ALMA + LMT Hα:- Extensive work locally; needs to be expanded to IFUs ⇒ Difficult in early-types, ok for all environments ⇒ Routine to intermediate z with 2nd generation 8m telescopes

More Related