500 likes | 689 Views
The Tully-Fisher Relation: Across Morphological Types and Redshift. Martin Bureau , Oxford University. Stellar: Michael Williams, Michele Cappellari CO: Timothy Davis, Lisa Young, Katey Alatalo, Leo Blitz Atlas 3D Team NANTEN2: Kazafumi Torii, Satoshi Yoshiike, Selçuk Topal, Yasuo Fukui,
E N D
The Tully-Fisher Relation: Across Morphological Types and Redshift Martin Bureau, Oxford University Stellar:Michael Williams, Michele Cappellari CO:Timothy Davis, Lisa Young, Katey Alatalo, Leo Blitz Atlas3D Team NANTEN2:Kazafumi Torii, Satoshi Yoshiike, Selçuk Topal, Yasuo Fukui, NANTEN2 consortium KMOS:Sarah Miller, Mark Sullivan, Roger Davies, UK KMOS consortium Plans:Galaxy formation, scaling relations, T-F relation Stellar T-F: data, modeling, Vc , S0-S evolution CO T-F: data, Vc biases, prospects High-z: local benchmarks, ALMA, VLT/KMOS Summary
The Tully-Fisher Relation: Across Morphological Types and Redshift Martin Bureau, Oxford University Stellar:Michael Williams, Michele Cappellari CO:Timothy Davis, Lisa Young, Katey Alatalo, Leo Blitz Atlas3D Team NANTEN2:Kazafumi Torii, Satoshi Yoshiike, Selçuk Topal, Yasuo Fukui, NANTEN2 consortium KMOS:Sarah Miller, Mark Sullivan, Roger Davies, UK KMOS consortium Plans:Galaxy formation, scaling relations, T-F relation Stellar T-F: data, modeling, Vc , S0-S evolution CO T-F: data, Vc biases, prospects High-z: local benchmarks, ALMA, VLT/KMOS Summary
Hubble Sequence (spheroid) SAa SAb SAc SAd Mass, velocity dispersion, L-weighted age, density Irr S0 (Astronomy 01) E3 E1 E7 Gas fraction, rotation, SF SBc (disk) SBa SBb SBd
Broad Aims Goals: • Mass assembly history (gas, stars, dark matter) • Chemical enrichment history (age, metallicity, SFH) Context: • Hierarchical structure formation (merging, harassment, ...) • Internal dynamical evolution (BH/triaxiality-driven, ...) ⇒ Exploit "fossil record" (near-field cosmology) (HST HDF) (SINS)
Scaling Relations (correlations) Stellar Evolution: • Colour - mag. diagram (CMD) • UVX - Mg relation Galaxy Evolution: • Colour - mag. diagram (CMD) • Fundamental plane (FP) Star Formation: • Far infrared - radio correlation • Kennicutt - Schmidt law (K-S) Underlying Physics: • M/L - velocity dispersion • Dark - visible matter (Micela et al. 88) (Blanton et al. 06) (Combes et al. 07)
Tully-Fisher: Definition Definition: • Originally, optical luminosity (magnitude) vs. HI linewidth • (corrected for disk inclination) • Generally, any luminosity • (stellar mass) vs. any rotational velocity (total mass) • ⇒ Luminous vs. dark matter Uses: • Distance determination • (H0, peculiar velocity field, …) • ⇒ M/L evolution with z (and type) • (zero-point and scatter) Lum. (Bureau et al. 96) V/sin i
Tully-Fisher: M/L evolution Scaling: • We have: • G M / R2 = V2 / R • M α V2 R • We define: • M/L • Σ = M / πR2 • We get: • L = V4 / πG2 (M/L) Σ • L α V4(M/L)-1 Σ-1 M/L: • Stellar populations • - Age • - Metallicity • - Non-Solar abundance ratio • - Star formation history (SFH) • - Initial mass function (IMF) • - … • Dark matter • Size scale • … • (Gas-rich) disk galaxies
Stellar + CO T-F: Goals Goals: • M/L evolution • Constraints on galaxy formation through zero-point and scatter • Probe E-S0-S interface • (stellar pops, DM, structure) • Constrain E-S0-S evolution • Identical treatment of E/S0/S • (avoid systematic biases) E - S0 - S continuity:
The Tully-Fisher Relation: Across Morphological Types and Redshift Martin Bureau, Oxford University Stellar:Michael Williams, Michele Cappellari CO:Timothy Davis, Lisa Young, Katey Alatalo, Leo Blitz Atlas3D Team NANTEN2:Kazafumi Torii, Satoshi Yoshiike, Selçuk Topal, Yasuo Fukui, NANTEN2 consortium KMOS:Sarah Miller, Mark Sullivan, Roger Davies, UK KMOS consortium Plans:Galaxy formation, scaling relations, T-F relation Stellar T-F: data, modeling, Vc, S0-S evolution CO T-F: data, Vc biases, prospects High-z: local benchmarks, ALMA, VLT/KMOS Summary
Stellar T-F: Sample, data • Sample: • 28 edge-on disk galaxies: • 14 S0, 14 Sa-Sc • Mostly bright, HSB, field objects • (Bureau & Freeman 1999) • K-band images • (Bureau et al. 06) • Stellar kinematics (2-3 Re) • (Chung et al. 04) • ⇒ Inclination known, need to derive (corrected) rotation velocity Stellar kinematics:(V, σ, h3, h4) (Chung et al. 04) v σ h3 h4 vrms = √(v2 + σ2)
Stellar T-F: Modeling method Luminous MGE model: • Multi-Gaussian expansion of image (incl. negative terms) • ⇒ Radially constant M/L* free • Dark NFW halo: • Assumed mass-concentration relation • ⇒ Dark halo virial mass MDM free • JAM dynamical model: • Jeans axisymmetric modeling • ⇒ Radially constant orbital anisotropy βz free JAM: MDM M/L* (Williams et al. 09) * Rotation dominant (esp. in outer parts), so anisotropy effects unimportant (mass-anisotropy degeneracy minimised)
Stellar T-F: Velocity measure • Velocities: • Need single measure of velocity • Flat (or asymptotic) velocity • Systematics: • Past works compare modeled Vcirc (or Vdrift) of S0s with HI line widths for Ss: significant biases • ⇒ Here, compare Vcirc with Vcirc Velocity definition: (Williams et al. 10) V (km s-1) R (arcsec)
Stellar T-F: Velocity measure • Velocities: • Need single measure of velocity • Flat (or asymptotic) velocity • Systematics: • Past works compare modeled Vcirc (or Vdrift) of S0s with HI line widths for Ss: significant biases • ⇒ Here, compare Vcirc with Vcirc Velocity comparisons: Vcirc - Vdrift S0 S S0 (Bedregal et al. 06) VHI - Vdrift (Williams et al. 10)
Stellar T-F: Velocity measure VLA+ATCA: • Velocities: • Need single measure of velocity • Flat (or asymptotic) velocity • Systematics: • Past works compare modeled Vcirc (or Vdrift) of S0s with HI line widths for Ss: significant biases • ⇒Here, compare Vcirc with Vcirc (Chung et al. 06, 12)
Stellar T-F: S0 vs Sab S0 vs Sab: • Large offset to Sc-Sd T-F relation for both S0 and Sab • S0 fainter than Sab by • 0.50 ± 0.15 mag at K (identical treatment) • (smaller than previous studies) • Evolution: • Fading timescale ≈1 Gyr, • but S0 up to z≈1 • ⇒ Passive evolution(exclusively) ruled out T-F relation:K-band (14 S0 + 14 Sa-Sc, mostly field spirals) (K-band; 2-3 Re stellar kinematics) S0 S (Williams et al. 10)
Baryonic T-F: S0 vs Sab Baryonic and “total” T-F: • S0 and Sab still slightly offset when considering stellar mass • (0.2 dex) (worse if gas added) • S0 – Sab offset unchanged for dynamical mass • (although Mdyn rather uncertain) • If S0 – Sab Mdyn offset is true, then “broken homology” • (S0 more compact by 20%) • ⇒ S0 not simply S fading… • dynamical “processing” • required T-F relation:M* and Mdyn M* S0 S Mdyn (Williams et al. 10)
Baryonic T-F: S0 vs Sab Baryonic and “total” T-F: • S0 and Sab still slightly offset when considering stellar mass • (0.2 dex) (worse if gas added) • S0 – Sab offset unchanged for dynamical mass • (although Mdyn rather uncertain) • If S0 – Sab Mdyn offset is true, then “broken homology” • (S0 more compact by 20%) • ⇒ S0 not simply S fading… • dynamical “processing” • required T-F relation:M* and Mdyn M α V2 R M α V4(M/L)-1 Σ-1
The Tully-Fisher Relation: Across Morphological Types and Redshift Martin Bureau, Oxford University Stellar:Michael Williams, Michele Cappellari CO:Timothy Davis, Lisa Young, Katey Alatalo, Leo Blitz Atlas3D Team NANTEN2:Kazafumi Torii, Satoshi Yoshiike, Selçuk Topal, Yasuo Fukui, NANTEN2 consortium KMOS:Sarah Miller, Mark Sullivan, Roger Davies, UK KMOS consortium Plans:Galaxy formation, scaling relations, T-F relation Stellar T-F: data, modeling, Vc , S0-S evolution CO T-F: data, Vc biases, prospects High-z: local benchmarks, ALMA, VLT/KMOS Summary
Possible Pitfalls: CO may not extend to flat part of rotation curve Geometry and inclination ill-defined CO-rich populations unrepresentative of general galaxy population (biased) … CO T-F: Caveats and pitfalls (Young et al. 11) (Young et al. 11)
Sample selection: MK < -21.5 D < 41 Mpc |δ – 29º| < 35º , |b| > 15º All E/S0s, no spiral structure Data: SAURON optical wide-field IFU SDSS/INT optical + 2MASS NIR imaging IRAM 30m CO (1-0)+(2-1) + CARMA CO (1-0) follow-up WSRT HI (δ > 10º, excl. Virgo) Various archives (XMM, Chandra, GALEX, HST, Spitzer, …) CO T-F: Atlas3D survey Red Blue Atlas3D g-r (Cappellari et al. 11) Mr ⇒ 260 galaxies
CO T-F: Single-dish survey IRAM 30m Survey: • CO(1-0,2-1), 23/12” FWHM • 260 Atlas3D E/SOs • Sensitivity: 3 mK (30 km s-1) 3 x 107 M⊙ Results: • 22% detection rate • MH2 = 107.1-9.3 M⊙ • CO(2-1)/CO(1-0) ≈ 1 - 2 • Largely independent of: • luminosity, dynamics (λR), • environment (Virgo), … High S/N: Low S/N: (Combes, Young & Bureau 07; Young et al. 11)
CO T-F: Single-dish survey IRAM 30m Survey: • CO(1-0,2-1), 23/12” FWHM • 260 Atlas3D E/SOs • Sensitivity: 3 mK (30 km s-1) 3 x 107 M⊙ Results: • 22% detection rate • MH2 = 107.1-9.3 M⊙ • CO(2-1)/CO(1-0) ≈ 1 - 2 • Largely independent of: • luminosity, dynamics (λR), • environment (Virgo), … Optical CMD + CO: (Young et al. 11, 13)
CO T-F: Inclination measures Stellar: • Galaxy axis ratio • (intrinsic thickness; c/a=0.34) • JAM best-fit inclination (Molecular) Gas: • Unsharp-masked image • ellipse fitting • Tilted-ring model best-fit inclination • ⇒ Error not strongly dependent on inclination Stellar i : (Davis et al. 11a) (Cappellari et al. 10)
CO T-F: Inclination measures Atlas3D (CARMA): • H2 and stars often misaligned: • ≥1/3 external (accretion/cooling) • ≤2/3 internal (stellar mass loss) • Always aligned in clusters • Randomly misaligned in field • ⇒ Increased scatter (and bias) • in field ? (Alatalo et al. 12) H2 - stars (Davis et al. 11b) Misalignment angle
CO T-F: Inclination measures Stellar: • Galaxy axis ratio • (intrinsic thickness; c/a=0.34) • JAM best-fit inclination (Molecular) Gas: • Unsharp-masked image • ellipse fitting • Tilted-ring model best-fit inclination • ⇒ Error not strongly dependent on inclination (Molecular) gas i : (Davis et al. 11a) (Cappellari et al. 10)
CO T-F: Velocity measure Selection: • Double-horn profiles likely to reach Vflat • (imperfect diagnostic) • CO traces Vflat globally • (not Vpeak) • CO traces the circular velocity locally • ⇒ CO excellent kinematic tracer Integrated profiles : (Young et al. 11)
CO T-F: Velocity measure CO vs. Ionised Gas: • CO rotating faster (colder) then ionised gas • (and stars) • Nearly perfect tracer of the circular velocity • Better (and excellent) tracer of dynamical mass • : BIMA CO (1-0) --- : SAURON JAM model + : SAURON stars + : SAURON ionised gas (Davis et al. 12)
CO T-F: Results CO Tully-Fisher: • Many (potential) pitfalls • Many better than expected • Many simple workarounds • Slope and zero-point • robustly recovered • Standard intrinsic scatter • ⇒ Stellar / Jeans T-F • easily recovered • ⇒ No or minimum efforts ! • ⇒ Great prospect to probe • M/L(z) with LMT+ALMA… CO Tully-Fisher relations: (Davis et al. 11a)
CO T-F: Results ETG/FR vs Sc: • Sc follow spirals in HI • ETG/FR fainter than Sc by 1.0 ± 0.1 mag at K-band • (identical treatment) • Consistent with Williams et al.’s 0.5 mag at K-band offset for Sab • (consistent with past work) • ⇒ CO T-F easily recovered across all Hubble types • (and environments) CO Tully-Fisher relations: (Chung et al., in prep)
The Tully-Fisher Relation: Across Morphological Types and Redshift Martin Bureau, Oxford University Stellar:Michael Williams, Michele Cappellari CO:Timothy Davis, Lisa Young, Katey Alatalo, Leo Blitz Atlas3D Team NANTEN2:Kazafumi Torii, Satoshi Yoshiike, Selçuk Topal, Yasuo Fukui, NANTEN2 consortium KMOS:Sarah Miller, Mark Sullivan, Roger Davies, UK KMOS consortium Plans:Galaxy formation, scaling relations, T-F relation Stellar T-F: data, modeling, Vc , S0-S evolution CO T-F: data, Vc biases, prospects High-z: local benchmarks, ALMA, VLT/KMOS Summary
CO T-F: Local benchmark Existing work: • Number of studies and objects limited • (Dickey, Lavezzi, Sofue, Tutui, …) • Large single dishes or interferometry • ⇒ Non-optimal datasets • ⇒ Hard to compare with future high-z work CO Tully-Fisher relations: (Lavezzi & Dickey 1998) (Schoeniger & Sofue 1997) (Dickey & Kazes 1992)
CO T-F: Local benchmark NANTEN2: • 4m mm/sub-mm dish, Atacama • CO(1-0) + (2-1) receivers • (1 GHz ≈ 2600 km s-1 bandwidth) • (61 kHz ≈ 0.15 km s-1 resolution) • Small consortium • ⇒ Large beam, 170” at CO(1-0) • (entire galaxies) • ⇒ Extensive, flexible scheduling NANTEN2:
CO T-F: Local benchmark Nearby galaxy survey: • Pilot observations: • - 30+ galaxies observed • (≈40 min on-source; • single pointing) • - Mosaics straightforward • (few attempted) • Full survey: • - 250+ “full” galaxies (≈3 yrs) • - Preferably no CO detection, • (non-TF) accurate distance • ⇒ z = 0 benchmark • (star formation, gas-to-dust ratio, …) NANTEN2: (Yoshiike et al., in prep)
CO T-F: Local benchmark Nearby galaxy survey: • Pilot observations: • - 30+ galaxies observed • (≈40 min on-source; • single pointing) • - Mosaics straightforward • (few attempted) • Full survey: • - 250+ “full” galaxies (≈3 yrs) • - Preferably no CO detection, • (non-TF) accurate distance • ⇒ z = 0 benchmark • (star formation, gas-to-dust ratio, …) NANTEN2: (Yoshiike et al., in prep)
CO T-F: Intermediate z ALMA: • 50 x 12m dishes to 16 km • 12 x 7m dishes compact array • 4 x 12m dishes total power • 10 bands, 30 - 950 GHz • (bands 3, 6, 7, 9: cycles 0+1) • (bands 4, 8, 10: in progress) • (bands 1, 2, 5: ???) • ⇒ Detect CO or CII in MW-like galaxy at z = 3 in 24 hr • (z = 1 in 1 hr?) • LMT + GBT promising ALMA:
CO T-F: Intermediate z ALMA: • CO(1-0): Band 3: z = 0.0 – 0.4 • Band 2: z = 0.3 – 0.7 • Band 1: z = 1.6 – 3.7 • CO(2-1): Band 6: z = 0.0 – 0.1 • Band 5: z = 0.1 – 0.4 • Band 4: z = 0.4 – 0.8 • Band 3: z = 1.0 – 1.7 • Band 2: z = 1.6 – 2.4 • Band 1: z = 4.1 – 6.4 • ⇒ Great T-F machine • (spatially-resolved or not) • ⇒ Need better understanding • of CO(2-1) ALMA: Spiral at z = 0.0, optical, CO(2-1), cont. + CO(6-5) (ESO) QSO at z = 4.4, CII 158 μm (unresolved) (ESO)
CO T-F: Intermediate z ALMA: • CO(1-0): Band 3: z = 0.0 – 0.4 • Band 2: z = 0.3 – 0.7 • Band 1: z = 1.6 – 3.7 • CO(2-1): Band 6: z = 0.0 – 0.1 • Band 5: z = 0.1 – 0.4 • Band 4: z = 0.4 – 0.8 • Band 3: z = 1.0 – 1.7 • Band 2: z = 1.6 – 2.4 • Band 1: z = 4.1 – 6.4 • ⇒ Great T-F machine • (spatially-resolved or not) • ⇒ Need better understanding • of CO(2-1) CARMA: (EGNoG survey: spirals at z = 0.3) (Bauermeister et al. 13)
Hα T-F: Local benchmark Existing work: • Large number of (long-)slit spectroscopic studies • (Mathewson et al., Courteau, …) • Few integral-field studies (IFU, Fabry-Perot, …) • Environment independent, • excellent “beam” • ⇒ Datasets available • ⇒ IFU groundwork incomplete • (simulate higher z IFU work) Hα Tully-Fisher relations: (C. Flynn) (EGG, Cornell U.)
Hα T-F: Local benchmark Existing work: • Large number of (long-)slit spectroscopic studies • (Mathewson et al., Courteau, …) • Few integral-field studies (IFU, Fabry-Perot, …) • Environment independent, • excellent “beam” • ⇒ Datasets available • ⇒ IFU groundwork incomplete • (simulate higher z IFU work) Hα velocity fields: (Chemin et al. 2005) (Epinet et al. 2009)
Hα T-F: Intermediate z VLT KMOS: KMOS: • 2nd generation VLT instrument • 24 deployable IFUs over 7.2’ FOV • (2.8” x 2.8”, 14 x 14 spaxels) • JHK bands, R ≈ 3500 • UK: Durham, Oxford, UKATC • Germany: MPE, Munich Obs, ESO • 250 GTO nights, 120 for UK • ⇒ Galaxy evolution from z = 1 to 10 (SFH, K-S, mergers, Mdyn, …) (MPE)
Hα T-F: Intermediate z Mid-z galaxy survey: KMOS UK GTO: • Large z = 0.5 - 3.0 survey • (Oxford, Durham?, MPE?) • Pilot: ≈20-30 objects per bin • 3 redshifts (0.8, 1.5, 2.4) • 2 morphological bins • Total: ≈1000 galaxies ? • CANDELS fields • (+ different environments) • ⇒ Adapt current (z = 0) tools • ⇒ Tully-Fisher (galaxy) evolution at intermediate redshifts (Miller et al. 12) (Förster Schreiber et al. 2009)
Hα T-F: Intermediate z Mid-z galaxy survey: KMOS UK GTO: • Large z = 0.5 - 3.0 survey • (Oxford, Durham?, MPE?) • Pilot: ≈20-30 objects per bin • 3 redshifts (0.8, 1.5, 2.4) • 2 morphological bins • Total: ≈1000 galaxies ? • CANDELS fields • (+ different environments) • ⇒ Adapt current (z = 0) tools • ⇒ Tully-Fisher (galaxy) evolution at intermediate redshifts (Koekemoer et al. 2011) (Miller et al. 2011)
The Tully-Fisher Relation: Across Morphological Types and Redshift Martin Bureau, Oxford University Stellar:Michael Williams, Michele Cappellari CO:Timothy Davis, Lisa Young, Katey Alatalo, Leo Blitz Atlas3D Team NANTEN2:Kazafumi Torii, Satoshi Yoshiike, Selçuk Topal, Yasuo Fukui, NANTEN2 consortium KMOS:Sarah Miller, Mark Sullivan, Roger Davies, UK KMOS consortium Plans:Galaxy formation, scaling relations, T-F relation Stellar T-F: data, modeling, Vc , S0-S evolution CO T-F: data, Vc biases, prospects High-z: local benchmarks, ALMA, VLT/KMOS Summary
T-F Conclusions HI:- Trivial locally for late-type galaxies ⇒ Only exceptionally in early-types, high-density environments ⇒ Impossible to mid-z until SKA Stars:- JAM successful; m2 good tracer of enclosed mass; Vcirc reliable ⇒ Possible for all morphological types, environments ⇒ Always time-consuming, impossible beyond local universe CO:- Limited work locally; needs to be expanded ⇒ Possible for all morphological types, environments ⇒ Routine to intermediate z with ALMA + LMT Hα:- Extensive work locally; needs to be expanded to IFUs ⇒ Difficult in early-types, ok for all environments ⇒ Routine to intermediate z with 2nd generation 8m telescopes