1 / 20

Függvények

Függvények. Forrás: www.kossuthzs-szeged.sulinet.hu/. Függvényfogalom. Adott két halmaz: H és K. Ha a H halmaz minden egyes eleméhez valamilyen egyértelműen hozzárendeljük a K halmaznak egy-egy elemét, akkor ezt a hozzárendelést függvénynek nevezzük.

liseli
Download Presentation

Függvények

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Függvények Forrás: www.kossuthzs-szeged.sulinet.hu/

  2. Függvényfogalom Adott két halmaz: H és K. Ha a H halmaz minden egyes eleméhez valamilyen egyértelműen hozzárendeljük a K halmaznak egy-egy elemét, akkor ezt a hozzárendelést függvénynek nevezzük. H halmazt a függvény értelmezési tartományának nevezzük. Értékkészlet: az összes lehetséges függvényérték halmaza. K halmaz a függvény értékkészlete vagy annál bővebb halmaz. Helyettesítési érték: f függvény x0 helyen felvett értéke. Jelölése: f(x0) Egy f: H1→K1, x→f(x) és egy g: H2→K2, x→g(x)függvényt akkor tekintünk egyenlőnek, ha értelmezési tartományuk azonos: H1=H2, és az értelmezési tartomány bármely x helyére f(x)=g(x)

  3. Elsőfokú függvények Az f: R → R, f(x) = ax + b (a, b konstans,a ≠ 0) függvényeket elsőfokú függvényeknek Az elsőfokú függvények képe egyenes.

  4. Másodfokú függvények Az f: R → R, f(x) = ax2 + bx + c (a, b, ckonstans,a ≠ 0) függvényeket másodfokú függvényeknek nevezzük. A másodfokú függvényeknek képe parabola

  5. Másodfokú függvények f(x)=12(x+3)2+4 f(x)=x2 f(x)= (x+3)2 f(x)=12(x+3)2 f(x)=12(x+3)2+4

  6. A négyzetgyök függvény Az függvényt négyzetgyök függvénynek nevezzük. A négyzetgyök függvény grafikus képe az x2függvény I. negyedben levő grafikus képéből az x és y tengely felcserélésével adódik. (Ez az y = x egyenletű egyenesre vonatkozó tükrözést jelent.)

  7. Elsőfokú törtfüggvények Az függvényt (ahol a, b, c, d konstans,c ≠ 0 és ad ≠ bc) elsőfokú törtfüggvénynek nevezzük. Az elsőfokú törtfüggvények képe hiperbola

  8. Elsőfokú törtfüggvények

  9. Elsőfokú törtfüggvények

  10. Az abszolútérték függvény Az f: R → R, f(x) = |x| függvényt abszolútérték függvénynek nevezzük. A g(x)=x függvény képének x tengely alatti részét tükrözzük az x tengelyre. Ez a tükörkép, együtt a g függvény grafikonjának az x tengelyen levő és az x tengely feletti részével, lesz az f függvény grafikus képe.

  11. Az abszolútérték függvény f(x) = 2|x+2|-3 f(x) = |x| f(x) = |x+2| f(x) = 2|x+2| f(x) = 2|x+2|-3

  12. Az egészrész függvény Az x valós szám egészrésze az a legnagyobb egész szám, amely kisebb az x-nél vagy egyenlő vele. Az egészrész jelölése: [x] (olvasd: „x egészrésze”). Például: [2,1] = 2; [3,98] = 3; [ –0,2] = –1; [ –7,8] = –8; [5] = 5. A definíció alapján: x – 1 < [x] ≤ x. Az f: R → R, f(x) = [x] függvényt egészrész-függvénynek nevezzük

  13. A törtrész függvény Az x valós szám törtrésze az x - [x] szám. A törtrész jelölése: {x} (olvasd: „x törtrésze”). Például: {2,1} = 0,1; {3,98} = 0,98; { –0,2} = 0,8; { –7,8} = 0,2; {5} = 0. A definíció alapján: 0 ≤ {x} < 1 és x = [x] + {x}. Az f: R → R, f(x) = {x} függvényt törtrész-függvénynek nevezzük

  14. A szignumfüggvény Az függvényt szignumfüggvénynek nevezzük Grafikus képe: egy pontból és két félegyenesből áll (a félegyenesek végpontjai nem tartoznak a függvényképhez). A (0; 0) pont a grafikon egy elszigetelt (izolált) pontja.

  15. Függvénytranszformációk

  16. Függvények jellemzői Valamely f függvény zérushelyeinek nevezzük az értelmezési tartományának mindazokat az x értékeit, amelyeknél f(x) = 0. A g: R→R, g(x)=x2−2x−3 függvénynek a zérushelyei x1 = –1, x2 = 3, mert g(–1) = 0, g(3) = 0

  17. Függvények jellemzői Ha az f függvény értelmezési tartományában egy intervallum bármely x1 < x2 értékeinél a függvényértékekre f(x1) < f(x2) áll fenn, akkor azon az intervallumon a függvény növekvő. Az f függvény a [b; c]-on monoton növő.

  18. Függvények jellemzői Ha az f függvény értelmezési tartományában egy intervallum bármely x1 < x2 értékeinél a függvényértékekre f(x1) > f(x2) áll fenn, akkor azon az intervallumon a függvény csökkenő. Az f függvény az [a; b]-on csökken. Szokásos kifejezéssel: „az f függvény az [a; b]-on monoton csökkenő”. (Monoton = egyhangú, változatosság nélküli.)

  19. Függvények jellemzői Egy f függvénynek minimuma van a változó x0 értékénél, ha az ott felvett f(x0) függvényértéknél kisebb értéket sehol sem vesz fel a függvény. A függvénynek az x = 1 helyen a legkisebb a függvényértéke: a függvénynek x = 1-nél minimuma van.

  20. Függvények jellemzői Egy f függvénynek maximuma van a változó x0 értékénél, ha az ott felvett f(x0) függvényértéknél nagyobb értéket sehol sem vesz fel a függvény. Az f függvénynek x = a helyen maximuma van. x = b bizonyos környezetében a függvénynek minimuma van, az x = c bizonyos környezetében pedig maximuma. Ezt helyi minimumnak, illetve helyi maximumnak nevezzük (más helyen a helyi minimumnál kisebb függvényérték is van, és megint más helyen a helyi maximumnál nagyobb függvényérték is van).

More Related