E N D
Example 1.1 a). Determine the voltage that must be applied to the magnetizing coil in order to produce a flux density of 0.2T in the air gap. Flux fringing will be assumed negligible. Assume that the magnetization curve for the core material (which is homogeneous) is that given in Fig 1.5. The coil has 80 turns and a resistance of 0.05 Ω. The cross-sectional area of the core material is 0.0400 m2. ECE 441
Flux “Fringing” • All lines of flux must • leave and arrive ECE 441
Flux Distribution ECE 441
Procedure • Determine Φgap and Fgap • Determine Hbcde, Bbcde, and Φbcde • Determine Φefab, Befab, Hefab, and Fefab • Determine FT and the required current • Using Ohm’s Law, determine the required voltage ECE 441
For the Gap • Φgap = BgapAgap = (0.2)(0.04) = 0.008Wb • Flux Density to establish 0.2 T in the center leg is determined from the magnetization curve in Fig. 1.5. (Next slide) • From the curve, H0.30=H0.60=0.47 oersteds • Multiply by 79.577 for A-t/m • H30 = H60 = 37.4 A-t/m ECE 441
0.2 0.47 ECE 441
Magnetic Potential Differences • F0.30 = H·l = (37.4)(0.30) = 11.22 A-t • F0.69 = H·l = (37.4)(0.69) = 25.81 A-t • Fgap = Hgap·lgap • To get Hgap, • μgap = Bgap/Hgap 4πx10-7 = 0.2/Hgap • Hgap = 159,155 A-t/m • Fgap = (159,155)(0.005) = 795.77 A-t • Fbghe = 11.22 + 25.81 + 795.77 = 833 A-t ECE 441
For the bcde leg • Fbghe = Fbcde • Hbcde=Fbcde/lbcde=833/(1+1+1)=277.67 A-t/m • In oersteds • Hbcde = 277.67/79.577 = 3.49 oersteds • Determine Bbcde from the magnetization curve in Fig. 1.5. (Next slide) • Bbcde = 1.45 T • Φbcde = BA = (1.45)(0.04) = 0.058 Wb ECE 441
1.45 3.49 ECE 441
For the efab leg • Φefab=Φgap + Φbcde=0.08+0.058=0.066 Wb • Befab = Φ/A = 0.066/0.04 = 1.65 T • Determine H to establish this field intensity from the magnetization curve in Fig. 1.5. (Next slide) • Hefab = 37 oersteds • Hefab = (37)(79.577) = 2944.35 A-t/m • Fefab= H·l = (2944.35)(1+0.8+0.8) • Fefab =7655.31A-t ECE 441
1.65 37 ECE 441
Total mmf to be supplied by the coil • FT = Fbghe + Fefab = 7655.31 + 833 • FT = 8488.31 A-t • FT = N·I = 8488.31 • I = 106.1 A • V = I·R =(106.1)(0.05) • V = 5.30 V ECE 441
Example 1.1 Part b • Using equations 1-5 and 1-7, determine the relative permeability of each of the legs of the core, and compare the calculated values with corresponding values obtained from the permeability curve in Fig. 1.5. ECE 441
Combining Eq (1-5) and (1-7) • μ = B/H • μr = μ/μ0 • μr = (B/H)/4π·10-7 = B/(4π·10-7·H) • μrleft = 1.65/(4π·10-7·2944) = 446 • μrcenter = 0.20/(4π·10-7·37.4) = 4256 • μrright = 1.45/(4π·10-7·277.67) = 4156.1 ECE 441
1.65 450 37 ECE 441
4000 0.2 0.47 ECE 441
1.45 4100 3.49 ECE 441