1 / 39

Mathematics PCK Workshop #1 Day 1

Mathematics PCK Workshop #1 Day 1. Ramallah, Palestine march 22 & 24, 2013. Dr. Elizabeth (Betsy) McEneaney [Mac-Uh-Ninny] Dept. of Teacher Education and Curriculum Studies UMass – Amherst emcenean@educ.umass.edu. Introductions. Your name where you work and what you do there

livia
Download Presentation

Mathematics PCK Workshop #1 Day 1

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Mathematics PCK Workshop #1Day 1 Ramallah, Palestine march 22 & 24, 2013

  2. Dr. Elizabeth (Betsy) McEneaney[Mac-Uh-Ninny]Dept. of Teacher Education and Curriculum StudiesUMass – Amherstemcenean@educ.umass.edu

  3. Introductions Your name where you work and what you do there what you hope to learn in these two days One interesting thing about you that not many people know

  4. Goal for this workshop: • Enhance your capacity to prepare in-service teachers to use effective strategies for interpreting and transforming mathematics content knowledge into pedagogically appropriate teaching strategies and learning environments in mathematics, grades 5 to 10.

  5. Honoring your experience and intuition…

  6. Honoring your experience and intuition… Much of this you already know… We will review, synthesize, brainstorm, adapt.

  7. By the end of the day today, I hope you will be able to: • Identify major math concepts and skills that students need; • Anticipate and diagnose some typical conceptual difficulties; • Identify and incorporate students' prior knowledge effectively; • ’ • You hope to:

  8. Our Mission in Math • Consolidate good “procedural knowledge” • Cultivate good “conceptual knowledge” through active learning • For both “concrete operational” and “formal operational” learners • And for those who don’t know that they should care • All while making it FUN!

  9. Awareness of self as learner • One aspect of METACOGNITIVE SKILLS • We want students to develop this awareness • So… teachers must have this awareness • So… teacher educators must have this awareness

  10. Your Math Autobiography • Please take 5 MINUTES to write down some thoughts about your experiences with math so far. We will share later. • Such as: • Was there a time that you really ENJOYED doing math? Describe the context and the feelings you had. • Was there a time that you really DISLIKED doing math? What was that like? • How do you study math? What works for you? • How do you use math in your life?

  11. What are some variations we see? What variations will we see among teachers and students? does this affect how we design instruction?

  12. The learner-centered classroom First, a “silent conversation”

  13. SILENT CONVERSATION ACTIVITY • No talking, please. • In your group, write answers, comments, reflections on the chart paper. • Later, you may write comments to other people’s reflections. • We will summarize later.

  14. The “look” of a great math class • Teacher: • Setting and sharing goals • Giving “wait time” • Checking for understanding • Encourage mathematical thinking • Represent in multiple ways • Integrate technology wisely • Gain from “mistakes” /misconceptions • Students: • Actively engaging • Working together • Using what they know • Persevering • Taking Risks From: Moynihan, C. 2012. Math Sense: The Look, Sound and Feel of Effective Instruction. Stenhouse Publishers.

  15. The “sound” of a great math class • Students: • Justifying and clarifying their thinking • Analyzing the thinking of others • Teacher: • Supporting math discourse/”math talk” • Engaging ALL students BOTH: Active listening, Using math vocabulary, encouraging risk taking

  16. The “feel” of a great math class

  17. Myths, counterproductive beliefs and misconceptions about math

  18. Free Write (2 minutes) • If we ask people on the street what they think about: • MATH in general • SCHOOL MATH • What to you think they would say?

  19. Which of those ideas are: • Category A: UNTRUE, and we need to change that misconception!! • Category B: UNTRUE, but it’s OK. • Category C: TRUE! • Category D: TRUE, unfortunately. We need to change the conditions that make it true.

  20. Thinking about student misconceptions in specific math topics • An insight from science education: • Misconception = “Everyday” conception • A mistake makes “sense” in a particular context • Example: ½ + ¼ = ?

  21. Some common misconceptions in Grades 5-10 mathematics (Betsy’s “Favorites”) • “Multiplication makes bigger, division makes smaller.” • 4.442 is a decimal, it can’t be written as a fraction. • ½ of 6, 0.5 of 6 and 50% of 6 are all different quantities. • 1/8 = 0.8 • 1.25 > 1.4 • Probability of flipping a coin and getting heads, then tails. ½+ ½ = 1 Adapted from: Misconceptions in Mathematics. www.counton.org

  22. A story problem • Hassan is on the wrestling team. To be in class one, he can weigh at most 48 kg, and to be in class two he can weigh more than 48 kg but no more than 55 kg. Hassan is hoping to wrestle in class two. How much is he allowed to weigh? • What common mistakes do students make?

  23. Perhaps my all-time favorite: • Maybe it’s a favorite of yours, too! • What mistake do students make, and what is the underlying misconception? Adapted from: Collins, A. and Dacey, L. 2011. The Xs and Whys of Algebra. Stenhouse Publishers.

  24. And the list goes on… The take away? “mistakes” aren’t usually random. Teachers need to pay attention to mistakes and learn from them.

  25. What should math teachers know?

  26. Shulman’s view of teacher knowledge • Shulman’s Pedagogical Content Knowledge (PCK): • Represent subject so that it is comprehensible to others • Understand student conceptions/misconceptions • Curricular knowledge

  27. Mathematical Knowledge for Teaching (MKT) • MKT: The deep knowledge of mathematics that allows for Shulman’s PCK Where does MKT fit on the diagram?

  28. Thames and Ball article in your packet Their approach: Look at real teaching, decide what kind of math knowledge is needed. Teachers need a LOT of math, even in the lower grades It isn’t the same kind of math that mathematicians need. • Example: Adding and subtracting with near-ten • 45 – 19 =

  29. USING THE HUNDREDS CHART Math knowledge needed: 45 – 19 =

  30. MKT is multi-faceted Including the ability to:

  31. Some questions to think about: • In small groups: • What do you think mathematicians think about Ball’s idea of “Mathematical Knowledge for Teaching”? Does it matter what they think? • If Ball is correct, what does this mean for how we train and develop math teachers?

  32. Extending Shulman’s theory: Technology • TPACK: Technological Pedagogical Content Knowledge FREE WRITE: How do you see Technological knowledge influencing what math teachers need to know?

  33. Instructional Models • How are your teachers currently structure their math lessons? • Does that structure support deep and active learning?

  34. Two alternative models 5E and “Launch, Explore, Summarize” Take a few minutes to read the descriptions of these two models

  35. Give feedback to a teacher Video of a 6th grade math class Would you want this teacher to change instructional model and approach?

  36. Designing Worthy Tasks in Math • WORTHY: Having great merit, character, or value. • (Worthy for whom??) • How can we increase the worthy tasks we ask students to work on? • Is everything that happens in a great math class worthy work?

  37. Another Silent Conversation The problems with math “problems”

  38. A teacher talks about making “good math problems” Mr. Dan Meyer 7th grade teacher TED Talk

  39. Summarizing the day • We clarified the goals we share for these PCK workshops. • We developed greater awareness of ourselves as math learners. • We reviewed common misconceptions about math and math learning. • We addressed a handful of common math mistakes and their associated “misconceptions.” • We reviewed Shulman’s work on teacher knowledge and extensions such as Ball’s MKT and TPACK. • We considered what makes a math problem “worthy” of student engagement and persistence.

More Related