210 likes | 300 Views
Evaluating LBS Privacy In DYNAMIC CONTEXT. Implement report (12/05/2011). Outline. Architecture Implement Merge module Algorithm module Reciprocity module Experiment Conclusion. Outline. Architecture Implement Merge module Algorithm module Reciprocity module Experiment
E N D
Evaluating LBS Privacy In DYNAMIC CONTEXT Implement report (12/05/2011)
Outline • Architecture • Implement • Merge module • Algorithm module • Reciprocity module • Experiment • Conclusion
Outline • Architecture • Implement • Merge module • Algorithm module • Reciprocity module • Experiment • Conclusion
Outline • Architecture • Implement • Merge module • Algorithm module • Reciprocity module • Experiment • Conclusion
Outline • Architecture • Implement • Merge module • Algorithm module • Reciprocity module • Experiment • Conclusion
Implemented algorithms • Nearest-neighbor ASR (nnASR) • R-Tree Index • Different results when run many times with same input • Interval Cloaking • Quad-Tree index • Same input – same result • Grid • Sorted List • Same input – same result
Outline • Architecture • Implement • Merge module • Algorithm module • Reciprocity module • Experiment • Conclusion
Checking reciprocity module • Input: issuer id + MBR • Output: number of users which have same MBR – real k • Algorithm: • Set k_anonymity = 0 • Run anonymizing algorithm to get AS • For each id ui in AS, run algorithm to get ASi • If AS = ASi then k_anonymity = k_anonymity + 1 • If k_anonymity >= k, return true • Else return false
Problem with reciprocity property • An assumption about anonymizing algorithm: • In snapshot, same input same result • Problem • Algorithm: same input different results • Example: nnASR I I 1st time 2nd time
nnASR: an attack proposed • Assumption • K is known • Idea • Find the chosen users • Its k-nn must be in or be the original MBR • Forecast the candidate issuer • For each user in original MBR (exclude chosen users) • Check whether its k-nninclude one of chosen users & expand MBR is equal to original MBR • True candidate
Illustration • k = 4 Candidate
Illustration • k = 4 Candidate
Refine algorithm • Just refine value k of request • Brute-force: • Increase k until request satisfies reciprocity property • Suitable for algorithms which: • Same input same result • Problem: • nnASR
Outline • Architecture • Implement • Merge module • Algorithm module • Reciprocity module • Experiment • Conclusion
Experiment • Implement the algorithms in Java • System configuration: • OS: Window 7 • Processor: AMD Phenom II X4 B40 3.0Ghz • RAM: 2GB • Data: users’ locations in Sanfrancisco with 17000 users • Run 500 tests and take the average to get output values
Experiment Average size of the generalized region
Conclusion • nnASRalgorithm: how to improve privacy of user? • The performance of reciprocity module