320 likes | 331 Views
This presentation discusses the use of global charge asymmetry to constrain the mass of a supersymmetric (SUSY) signal. Theoretical predictions and experimental measurements are presented, along with a breakdown of theoretical uncertainties. The goal is to establish mass templates with both theoretical and experimental uncertainties. The results provide valuable insights into the SUSY signal and its mass constraints.
E N D
S. Muanza, T. Serre CPPM Marseille, CNRS-IN2P3, France Mass Constraint on a SUSY Signalfrom Global Charge Asymmetry Terascale GDR Meeting @ Annecy
Outline • Introduction • Reminders of the W test bench • Chosen SUSY Signal • Motivations to use AC • TheoreticalPrediction • Goal: Mass TemplateswithTheoreticalUncertainties • Mean: Parton Level Cross Sections • ExperimentalMeasurement • Goal: Mass TemplateswithExperimentalUnceratinties • Mean: ParticleLevel Simulation • Indirect Mass Constraint • Conclusions
Introduction - Reminders on W - • In myprevious talk on thistopic, I presented a « New Method » to measure the W boson mass at ~10% accuracy • Reminders: • Global Charge Asymmetry: • Indirect W Mass Determination: • It worthwhileonly if: • the kinematic reconstruction has verypoorresolution • toomany final state particles are invisible
Introduction - SUSY Signal (1) - • My main focus is to apply it to the following SUSY process in the trilepton+mET topology: • GCA could provide an additional handle:
Introduction - SUSY Signal (2) - • SUSY Signal Scans: using Simplified Models
2. Theoretical Prediction - Parton Level Cross Sections - • Goal: establish a look-up table to translate an input GCA into a mass accounting for the theoreticaluncertainties • Wejust use LO cross sections calculatedwithProspino v2.1 with the following setup: • Phase Space: calls to VEGAS sufficient to getdsstat< 1 % • QCD Scales: • Parton LVL Cuts: none • Process ME: • Collider Energy: • Int. Luminosity: • PDFs: Had to use an hacked version by B. O’Leary to interface MRST and MSTW PDFs!
2. Theoretical Prediction - Theoretical Uncertainties - • Statistical Uncertainty: • Scale Uncertainty: • PDF Uncertainty:
2. Theoretical Prediction - Breakdown of Theoretical Uncertainties - • Example of SUSY Signal template data: CTEQ6L1
2. Theoretical Prediction - GCA Mass Templates - CTEQ6L1
2. Theoretical Prediction - GCA Enveloppes Fits - • Interpolate the 1s uncertainty curves • Same • Fit 2 curves with: Max Fit range: [15,1500] GeV, for all fits Central Min Tools 012, Stockholm
3. Experimental Measurement - Goals - • Extract the GCA of a given signal in a « realistic » environment • Study the experimental biases affecting AC: • Event selection (Trigger & Offline) • Background contamination • Account for experimental systematic uncertainties
3. Experimental Measurement - MC Production Tools - Herwig++ v2.5.2 HepMC v2.06.08 DELPHES v2.0 ROOT v5.28 Pythia v8.157 HPSS (RFIO) LHAPDF v5.7.1 Alpgen v2.14 • Event generation: • Generator: • Herwig++ v2.5.2 • For all SM processes, except… • Pythia v8.157 • For SUSY Signals • For Single Top • Alpgen v2.14 • VVV, W+c, W+cc, W+bb, W+tt; (Z+cc, Z+bb, Z+ttfailed)
3. Experimental Measurement - MC Production Setup - • PDF: MRST2007lomod • H++ UE Tune: • Name: « LHC-UE7-2 » • Ref: ATLAS_2010_S8894728 • Py8 UE Tune: • Name: « 2M » • Ref: arXiv:1003.2384 [hep-ph] • ME: LO • Normalization: LO xsect • No K-factors: QCD (LF), cc, bb, g+jets, gg (very low e) • NLO K-Factors: tt, t+X,VV, g+V (V=W or g*/Z) • NNLO K-Factors: V • Statistics: 108.1 M evts • Full details about: • MC Production: in appendix 1 • Fast Detector Simulation: in appendix 2
3. Experimental Measurement - Trigger & Event Skimming - Trigger Emulation Event Skimming • Isolated Leptons: • 1e (pT > 25 GeV) • 1m(pT > 20 GeV) • 2e(pT > « 2x15 » GeV) • 2m(pT > « 2x10 » GeV) • Isolated Photons: • 1g (pT > 60 GeV) • 2g(pT > « 2x20 » GeV) • Tau plus missing ET: • t+mET(pT > 35 & mET > 45 GeV) • Jet plus missing ET: • Jet+mET(pT > 70 & mET > 70 GeV) • Inclusive Jets: • 1j (pT > 400 GeV) • 3j (pT > « 3x165 » GeV) • 4j (pT > « 4x110 » GeV) • Goal: • Reduce specific data subsets to manageable size (that can be staged) • Event filtering: based on trigger bits • « 3lep »: • single lepton OR di-lepton
3. Experimental Measurement - Event Selection (1) - Preselection (1) Objects: • Muons • pT(m0) > 10 GeV • |h(m0)| < 2.40 • Muon Isolation: • Tracker: IsolFlag = 1 • Calo: ETRatio < 0.25 • Electrons • pT(e) > 10 GeV • |h(e)| < 1.37 or 1.53 < |h(e)| < 2.47 • Electron Isolation: • Tracker: IsolFlag = 1 • Calo: ETRatio < 1.5 No add’l tracks w/ pT > 2 GeV in a cone of DR=0.5 around m0
3. Experimental Measurement - Event Selection (2) - Preselection (2) Trilepton: • 3e • pT > 20, 20, 10 GeV • 3m • pT > 15, 15, 10 GeV • 1e+2m • Reject if: • pT(e0)<20 & pT(m1) < 15 GeV • 2e+1m • Reject if: • pT(e1)<20 & pT(m0) < 15 GeV Missing ET: • mET > 35 GeV Final Selection M4T: • m4T < 120 GeV or • m4T > 220 GeV
3. Experimental Measurement - Event Selection (3) -
3. Experimental Measurement - Experimental Mass Templates -
3. Experimental Measurement - Experimental Uncertainties - • Experimental systematic uncertainties: • Not derived by any DELPHES study • Take more realistic values from real data analyses • Very conservative examples (L < 35 pb-1): • Asymmetries: • in muon channel: 1.0% (ref: arXiv:1103.2929v1 [hep-ex]) • in electron channel: 1.5% (ref: ATLAS-CONF-2010-051) • S/B ratio: • in muon channel: 2.32% (ref: ATLAS-CONF-2011-041 ) • in electron channel: 2.80% (ref: ATLAS-CONF-2011-041 ) • We used 1.0% for GCA and 1.2% for S/B
3. Experimental Measurement - Extracting Signal GCA - • Now we need to extract the signal GCA: • without bias from the remaining background Ideal case More realistic case • Note: only ratios appear in extracted signal GCA (low systematics)
3. Experimental Measurement - Extracting Signal GCA Cont’d - • Now we need to account for all signal and background statistical and systematic uncertainties • We propagate those numerically into the previous formula. This enables to account simultaneously for all the uncertainties and their correlations.
3. Experimental Measurement - Extracting Signal GCA Cont’d - 10 M trials
5. Conclusions • We introduced a new method exploiting the GCA at the LHC to contrain • We managed to reconstruct W mass indirectly: • Acceptable central values • Very bad resolution (as expected) • We managed to reconstruct the mass of a SUSY charged final state: • Acceptable central values • Even if the accuracy is not great, additional information is acquired • To be applied on real data, this method requires a very good MC modeling of the data
IV. Indirect Mass Constraint - PDF RW in DELPHES - • The experimental mass templates are based on the MRST2007lomod PDF • To correctly interpret our results for any other PDF, either: • we redo the full MC production using that PDF or • we apply a PDF reweighting to the MRST samples: • Oops! I forgot to check wether the PDF variables (x1,x2,flav1,flav2,Q2) were stored in the DELPHES MC truth informations • Good news #1: they are stored by default in HepMC • Bad news: DELPHES ignore these infos! • … • Good news #2: I fixed this problem by: • retrieving the HepMC::PdfInfo object from the HepMC input file • stored the PDF variables into the « GEN » tree of DELPHES • you can find my fix at https://server06.fynu.ucl.ac.be/projects/delphes/ticket/44
Appendix 2 -Fast Detector Simulation- • Detector datacard: ATLAS Objects Reconstruction Sub-Detectors Acceptance • Inner Tracker: • Central Calorimeter: • End-Cap Calorimeter: • Forward Calorimeter: • Muon Spectrometer: • Calorimeter Granularity: • Hadrons deposit in EM and HAD, separately smeared with EM and HAD resolutions • No Shower Simulation or Library! • Missing ET:
Appendix 2 -Fast Detector Simulation- Objects Reconstruction Objects Reconstruction Thresholds • Jet Finder: FastJet v? • Algo: « Anti-kT » • Cone radius: DR=0.4 • Seed: pT > 1 GeV • Tracks: • Electrons: • Photons: • Jets: • Muons: • Taus: 3.51m 1.15m • Solenoidal Magnetic Field: • B=2 T • Applied on all stable charged particles • No simulation of toroidal magnetic field • Overall tracking efficiency:
Appendix 2 -Fast Detector Simulation- • Objects Resolution: • Calorimeters:
Appendix 2 -Fast Detector Simulation- DELPHES v2.0 • Output informations are stored into 3 different ROOT trees • « GEN »: MC truth (particles, ID, status, 4-p, charge, parenthood links,…) • « Analysis »: Reconstructed Objects (type, number, 4-p,…) • « Trigger »: • Pass or Fail for a list of trigger conditions • Based on a TCloneArray of the Analysis tree • No real separate trigger simulation: • Same calorimeter granularity • Same objects resolutions