570 likes | 838 Views
Biology 2250 Principles of Genetics. Announcements Lab 3 Information: B2250 (Innes) webpage download and print before lab. Virtual fly: log in and practice http://biologylab.awlonline.com/. B2250 Readings and Problems. Ch. 4 p. 100 – 112 Prob: 10, 11, 12, 18, 19
E N D
Biology 2250Principles of Genetics Announcements Lab 3 Information: B2250 (Innes) webpage download and print before lab. Virtual fly: log in and practice http://biologylab.awlonline.com/
B2250Readings and Problems Ch. 4 p. 100 – 112 Prob: 10, 11, 12, 18, 19 Ch. 5 p. 118 – 129 Prob: 1 – 3, 5, 6, 7, 8, 9 Ch. 6 p. 148 – 165 Prob: 1, 2, 3, 10
Weekly Online Quizzes Marks Oct. 14 - Oct. 25 Example Quiz 2** for logging in Oct. 21- Oct. 25 Quiz 1 2 Oct. 28 Quiz 2 2 Nov. 4 Quiz 3 2 Nov. 10 Quiz 4 2
Weekly Online QuizzesResults Example quiz: Quiz 1: Answers: http://webct.mun.ca:8900/
Mendelian Genetics Topics: -Transmission of DNA during cell division Mitosis and Meiosis - Segregation - Sex linkage (problem: how to get a white-eyed female) - Inheritance and probability - Independent Assortment - Mendelian genetics in humans - Linkage - Gene mapping - Tetrad Analysis (mapping in fungi) - Extensions to Mendelian Genetics - Gene mutation - Chromosome mutation - Quantitative and population genetics
Mendelian Inheritance Determining mode of inheritance: - single gene or more complicated - recessive or dominant - sex linked or autosomal - probability Approach: cross parents observed progeny compare with expected
Mendelian Genetics in Humans Determining mode of inheritance Problems: 1. long generation time 2. can not control mating Alternative: * information from matings that have already occurred “Pedigree”
Human Pedigrees Pedigree analysis: trace inheritance of disease or condition provide clues for mode of inheritance (dominant vs. recessive) (autosomal vs. sex linked) however, some pedigrees ambiguous determine probability
Mendel’s Second Law Independent assortment: during gamete formation, the segregation of one gene pair is independent of other gene pairs. Genes independent because they are on different chromosomes
Independent Assortment Genotypes AABB AaBb AaBB AABb F1 AaBb X AaBb F2 9 A-B- 3 A-bb 3 aaB- 1 aabb Aabb, AAbb 4 phenotypes aaBb, aaBB
Independent Assortment Test Cross AaBb X aabb gametes ab 1/4 AB AaBb 1/4 Ab Aabb 1/4 aB aaBb 1/4 ab aabb 4 phenotypes 4 genotypes
Independent Assortment Inferred F1 gamete types AB Fig 6-6 ab Ab aB Interchromosomal Recombination
(Genes) Meiosis I A Correlation of genes and Chromosomes during meiosis a 4 gamete types b B A A OR a a b B
Linkage of Genes - Many more genes than chromosomes - Some genes must be linked on the same chromosome; therefore not independent
Complete Linkage X AaBb dihybrid P A B a b F1 A B a b F1 gametes A B a b AB AB ab ab parental
Recombinant Gametes ? Crossing over: - exchange between homologous chromosomes
Crossing over in meiosis I Meiosis I - homologous chromosomes pair - reciprocal exchange between non-sister chromatids Ch 4 meiosis animation: http://www.whfreeman.com/mga/
Gamete Types X F1 A B a b AaBb gametes A B AB Parental a b ab Parental A b Ab Recomb. a B aB Recomb.
Two Ways to produce dihybrid 1 Note: Chromatids omitted AABB x aabb AaBb X A B a b A B a b 2 AAbb x aaBB AaBb A b a B A b a B X
1. Ways to produce dihybrid Note: Chromatids omitted P X Cis A B a b A B a b A B AaBb a b (dihybrid ) Gametes: AB P ab P Ab R aB R
2. Ways to produce dihybrid P X A b a B A b a B AaBb A b trans (dihybrid ) a B Gametes: P Ab P aB R AB R ab
Two ways to produce dihybrid P X X A B a b A b a B A B a b A b a B cis A B AaBb A b trans a b (dihybrid ) a B Gametes: AB P Ab ab P aB Ab R AB aB R ab
Independent Assortment Linkage Fig 6-6 Fig 6-11 Interchromosomal Intrachromosomal
Example Test Cross AaBb X aabb ab Exp. Obs. AB AaBb 25 10 R Ab Aabb 25 40 P aB aaBb 25 40 P ab aabb 25 10 R 100 100 How to distinguish: Parental high freq. Recombinant low freq.
Example (cont.) Gametes: AB R Ab P aB P ab R Therefore dihybrid: A b (trans) a B
Linkage Maps Genes close together on same chromosome: - smaller chance of crossovers between them - fewer recombinants Therefore: percentage recombination can be used to generate a linkage map
Linkage maps A B large # of recomb. a b C D small number of recombinants c d Alfred Sturtevant (1913)
Linkage mapsexample 65 Testcross progeny: P AaBb 2146 R Aabb 43 R aaBb 22 P aabb 2302 Total 4513 1.4 map units = 1.4 % RF 4513 A 1.4 mu B
Additivity of map distances separate maps A B A C 7 2 combine maps C A B 2 7 or Locus A C B (pl. loci) 2 5
Linkage Deviations from independent assortment Dihybrid gametes 2 parent (noncrossover) common 2 recombinant (crossover) rare % recombinants a function of distance between genes % RF = map distance
Linkage maps Drosophila Tomato Linkage group = chromosome
Summary Dihybrid Cross (Indep. Assort.): - ratios (9:3:3:1, 1:1:1:1) - linkage (deviation from I.A.) - recombination - linkage maps Mendelian Genetics: Monohybrid cross (segregation): - ratios (3:1, 1:2:1, 1:1) - dominance, recessive - autosomal, sex-linked - probability - pedigrees
Gametes Number of Genes Number of Different Gametes monohybrid 1 (Aa) 2 dihybrid 2 (AaBb) 4 trihybrid 3 (AaBbCc) ?
Trihybrid Three Point Test Cross AaBbCc X aabbcc ABC ABc abc AbC Abc aBC aBc abC abc 8 gamete types
Three Point Test Cross Trihybrid Gametes C ABC B c ABc A C AbC b c Abc a
Three Point Test Cross Trihybrid AaBbCc 3 genes: Possibilities: 1. All unlinked 2. Two linked; one unlinked 3. Three linked 1 2 3
Three genes Wild (+) mutant 1. Eye colour 2.Wing 3. Wing v cv ct
Three Point Test Cross Three recessive mutants of Drosophila: +, v vermilion eyes +, cv crossveinless +, ct cut wing P +/+ cv/cv ct/ct X v/v +/+ +/+
Three Point Test Cross P +/+ cv/cv ct/ct x v/v +/+ +/+ Gametes + cv ct v + + F1 trihybrid v/+ cv/+ ct/+
Three Point Test Cross F1 v/+ cv/+ ct/+ x v/v cv/cv ct/ct v cv ct 8 gamete types one gamete type
8 gamete types Parental = non crossover (most frequent) F1 v/+ cv/+ ct/+ v + + 580 Parental + cv ct 592 Parental v cv + 45 + + ct 40 v cv ct 89 Recombinant + + + 94 v + ct 3 + cv + 5 1448
8 gamete types Examine two genes at a time Parental F1 v/+ cv/+ ct/+ v + + 580 + cv ct 592 v cv + 45 + + ct 40 v cv ct 89 + + + 94 v + ct 3 + cv + 5 1448 Recombinant Recombinant Parental
8 gamete types Parental F1 v/+ cv/+ ct/+ v + + 580 + cv ct 592 v cv + 45 + + ct 40 v cv ct 89 + + + 94 v + ct 3 + cv + 5 1448 Parental Recombinant Recombinant
8 gamete types Parental F1 v/+ cv/+ ct/+ v + + 580 + cv ct 592 v cv + 45 + + ct 40 v cv ct 89 + + + 94 v + ct 3 + cv + 5 1448 Recombinant Parental Recombinant
Calculate Recombination Fraction 1. v - cv R v cv 45 + 89 R + + 40 + 94 268 / 1448 = 18.5 % 2. v - ct R + + 94 + 5 R v ct 89 + 3 191/1448 = 13.2 % 3. ct - cv R ct + 40 + 3 R + cv 45 + 5 93/1448 = 6.4 %
Three point test cross Observations: all 3 RF < 50 % 3 genes on same chromosome v-----cv largest distance ct in middle map v-------ct-------cv = cv-------ct-------v 13.2 + 6.4 = 19.6 > 18.5 !! Why ?
Three Point Test Cross P +/+ ct/ct cv/cv x v/v +/+ +/+ gametes + ct cv v + + F1 trihybrid v + + + ct cv Correct gene order
Three Point Test Cross X X X X Double crossover class rarest: v---cv P v + + v + P + ct cv + cv R v ct + v + R + + cv + cv
Three Point test cross 1. Double crossovers not counted in v--cv RF 2. Double crossovers generate P types (with respect to v--cv) 3. Double crossovers not detected as recombinants Consequence: underestimate of v----cv map distance Greater distance of genes greater error