500 likes | 624 Views
Muonium (M). The Past, Present and Future of Muonium Memorial Symposium in Honor of Vernon Willard Hughes Yale University, November 14-15, 2003 Klaus Jungmann Kernfysisch Versneller Instituut & Rijksuniversiteit Groningen Simple Atomic System Atomic Theory Fundamental Constants
E N D
Muonium (M) The Past, Present and Future of Muonium Memorial Symposium in Honor of Vernon Willard Hughes Yale University, November 14-15, 2003 Klaus Jungmann Kernfysisch Versneller Instituut & Rijksuniversiteit Groningen Simple Atomic System Atomic Theory Fundamental Constants Fundamental Symmetries Search for New Physics Atomic Physics at Accelerators Precision Measurements … Condensed Matter Physics Chemistry Low energy Muon Beams
Muonium (M) { What is it ? • “Muonium is the bound state of a • positive Muon and an Electron” • “point-like” particles • no (severe) strong interaction effects • calculable to required accuracy What is it good for ? • test of electromagnetic bound state theory • fundamental constants • tests of fundamental symmetries • search for New Physics • tool for condensed matter research • ……
Discovery of Muonium 1960 Hyperfine Structure addressed as an Important Quantity From: V. Telegdi, in: “A Festschrift for Vernon W. Hughes”, 1990 Past of Muonium (Ground State Hyperfine Structure) There was stimulating competition
. . .
The worlds most intense quasi continuous muon source - the Los Alamos Meson Physics Facility
Solenoid Sm m+ e- Gated Detector m+in MW-Resonator/Kr target Muonium Hyperfine Structure Yale - Heidelberg - Los Alamos
Results from LAMPF Muonium HFS Experiment measured: • n12 = 1 897 539 800(35) Hz ( 18 ppb) • n34 = 2 565 762 965(43) Hz ( 17 ppb) from Breit-Rabi equation: n12 +n34 • Dnexp = 4 463 302 765(53) Hz ( 12 ppb) • Dntheo = 4 463 302 563(520)(34)(<100) Hz (<120 ppb) n12 -n34 • mm/mp = 3.183 345 24(37) (120 ppb) alternatively derived: • mm/me = 206.768 277(24) (120 ppb) • a-1 = 137.036 0047(4 8) ( 35 ppb)
Lepton Magnetic Anomalies in CPT and Lorentz Non - Invariant Models | | - m m - 0 0 18 CPT tests K K = £ r 10 K m 0 K - - | g g | | a a | - + - + - - 3 12 e e e e = = × × £ × r 1.2 10 2 10 e g a avg avg ? ? Are they comparable - Which one is appropriate • often quoted: • K0- K0 mass difference (10-18) • e- - e+ g- factors (2* 10-12) • We need an interaction • with a finite strength! Use common ground, e.g. energies Þ generic CPT and Lorentz violating DIRAC equation 1 n μ μ μ μν μ μ ν ψ - - - - + + = (i γ D m a γ b γ γ H σ ic γ D id γ γ D ) 0 μ μ μ 5 μν μν μν 5 2 º ¶ - iD i qA m μ μ a , b break CPT a , b , c , d , H break Lorentz Invariance μ μ μ μ μν μν μν Leptons in External Magnetic Field - + l l l = - » - Δω ω ω 4b a a a 3 - + l l - | E E | Δω h spin up spin down a = » r l - 2 l m c E l spin up 57 Bluhm , Kostelecky, Russell, Phys. Rev. D ,3932 (1998) For g - 2 Experiments : - | a a | ω h = × c - + l l r l 2 a m c avg l Dehmelt, Mittleman,Van Dyck, Schwinberg, hep - ph/9906262 Þ - - 21 24 £ × £ × r 1.2 10 r 3.5 10 electron muon μ e : : CPT– Violation Lorentz Invariance Violation • What is best CPT test ? • New Ansatz (Kostelecky) • K0 10-18 GeV/c2 • n 10-30 GeV/c2 • p 10-24 GeV/c2 • e- 10-27 GeV/c2 • Future: • Anti hydrogen 10-18 GeV/c2 What about Second Generation Leptons?
CPT and Lorentz Invariance from Muon Experiments Muonium: new interaction below 2* 10-23 GeV Muon g-2: new interaction below 4* 10-22 GeV (CERN) 15 times better expected from BNL V.W. Hughes et al., Phys.Rev. Lett. 87, 111804 (2001)
Present Status of Muonium Ground State Hyperfine Structure • No Experimental Activities known at this time • Refinement of Theory going on • e.g. • Eides, Grotch, “Three-Loop Radiative-Recoil Corrections to Hyerfine Splitting in Muonium”, Phys.Rev.D67, 113003 (2003) • Eidelman, Karshenboim, Shelyuto, “ Hadronic Effects in Leptonic Systems: Muonim Hyperfine Structure and Anomalous Magnetic Moment of Muon”, Can. J. Phys. 80, 1297 (2002) …. • Exploitation of the Atom in Condensed Matter Science • e.g. • Ivanter et al. “On the anomalous muonium hyperfine structure in silicon” J.Phys.: Condens. Matter 15, 7419 (2003) ….
History of Muonium Ground State Hyperfine Splitting Measurements NEVIS CHICAGO-SREL LAMPF LAMPF latest experiment Quoted Uncertainty [kHz] Year
Future Possibilities for Muonium Ground State Hyperfine Structure • LAMPF Experiment limited bySTATISTICS • more MUONS needed factor > 100 over LAMPF – pulsed > 5*108m+/s below 28 MeV/c • new ACCELERATORS • J-PARC ? • Neutrino Factory ? • Eurisol ? • GSI ? • . . . . .
What other experiments but the Ground State Hyperfine Structure are possible ?
Gas Stop • Yields up to 100% foreign gas effects • Polarization up to 50% (B=0) • 100% (B>>1T) Kr, Ar m+ m++e-M • Beam Foil • Muonium in Vacuo keV energy • n=2 state populated • fast muonium m+ 50% m+e- 1% m+e-e- 0.01% m+ • SiO2 Powder • thermal Muonium in Vacuo M(2s) /M(1s) < 10-4 • Yields up to 12% • Polarization 39(9)% velocity 1.5 cm/ tm M m+ Methods of Muonium Production
Completed Experiments on Muonium 1s-2s Interval • Pioneering effort at KEK • (Chu,Mills,Nagamine et al.) • Precision measurement at RAL • (Heidelberg – Oxford – Rutherford – Strathclyde – Siberia –Yale • Collaboration)
The most intense pulsed muon source – ISIS at the Rutherford Appleton Laboratory
m++ e-+ Ekin 0 -.25 Rm 2S 244 nm Energy 244 nm -Rm 1S m+ Detection m+ Laser Mirror m+e- Target Diagnostics m+in Muonium 1S-2S Experiment Heidelberg - Oxford - Rutherford - Sussex - Siberia - Yale
Muonium 1s-2s At RAL 1987 -2000
exp Dn 1s-2s = 2455 528 941.0(9.1)(3.7) MHz Dn 1s-2s = 2455 528 935.4(1.4) MHz mm+= 206.768 38 (17) me (0.8ppm) qm+= [ -1 -1.1 (2.1) 10-9 ] qe-(2.2 ppb) theo Results:
Future Possibilities for Muonium 1s-2s Interval • No Precision Experiment Activities known at this time • Exploitation of Laser Spectroscopy to obtain • “Slow Muons” Condensed Matter Science • (K. Nagamine et al. @RAL)
Future Possibilities for Muonium 1s-2s Interval • RAL Experiment limited bySTATISTICS • more MUONS needed • factor > 1000 over RAL – pulsed > 5*108m+/s below 28 MeV/c • would enable cw laser spectroscopy ! (precision !) • new ACCELERATORS • J-PARC ? • Neutrino Factory ? • Eurisol ? • GSI ? • . . . . .
m g-2 hadronic contribution weak contribution New Physics QED QED mm, a, gm mm m+e- DnHFS, n=1 m+e- Dn1S-2S QED mm mm a QED corrections weak contribution mm QED corrections
wa wammc wp = am = mm wa emB - wp mp Fundamental Constants of Interest to g-2 Theory: * need a for muon ! * hadronic and weak corrections *various experimental sources of a<better 100ppb>need constants at very moderate *a no concern for (g-2)meven with recent correctionsaccuracy Experiment: * wa and B (wp) measured in (g-2)m experiment <better 0.35 and 0.1 ppm> * c is a defined quantity <“infinite” accuracy> *mm (mm) is measured in muonium spectroscopy (hfs) <better 120 ppb> NEW 2000 *em is measured in muonium spectroscopy (1s -2s) <better 1.2 ppb> NEW 1999 *mp in water known >> probe shape dependence<< <better 26 ppb> *m3He to mp in water >> gas has no shape effect << <better 4.5 ppb> being improved
Any New Effort to improve significantly on the Muon Magnetic Anomaly will need better constants ! Where should they come from, if not from Muonium Spectroscopy ?
Did first Search for Conversion Amato et al. Phys.Rev.Lett. 21, 1709 (1968) Was significant Part of many follow on experiments Predicted M-M Conversion 1957- Named System “Muonium” ? Muonium – Antimuonium Conversion up to Now
The most intense continuos source of muons – the Cyclotron Facility at the Paul Scherrer Institut
Present Activities concerning Muonium – Antimuonium Conversion • No Experimental Activities known at this time • Theory is proposing lots of models • e.g. • Clark, Love “Muonium-Antimuonium Oscillations and Massive Majorana Neutrinos”, hep-ph/0307264 • Gusso, Pires, Pires, Rodrigues da Silva “Minimal 3-3-1 Model, lepton Mixing and Muonium- Antimuonium Conversion”, hep-ph/0208062 • ….
Future Possibilities for Muonium – Antimuonium Searches • PSI Experiment limited bySTATISTICS • more MUONS needed factor > 1000 over PSI – pulsed > 1*109m+/s below 28 MeV/c • new ACCELERATORS • J-PARC ? • Neutrino Factory ? • Eurisol ? • GSI ? • . . . . .
P(M) sin2 [const * (GMM/GF)*t]*exp[-lm*t] • Background exp(- nlm*t) ; n-fold coincidence detection • For GMM << GF M gains over Background • P(M) / Background t2 * exp[+(n-1)* lm*t] Old Muonium for Muonium-Antimuonium Conversion ? Pulsed ACCELERATOR
There is not only Muonium Spectroscopy waiting for a push by Intense Muon Beams
Muon Physics Possibilities at Any High Power Proton Driver i.e. 4 MW Muon Experiments Possible at a CERN Neutrino Factory - Expected Improvements
Muon Physics Possibilities at Any High Power Proton Driver i.e. 4 MW < < < < K Jungmann 18-Apr-2001
J-PARC is one Possibility • There are others • as well: • Neutrino Factory ? • Muon Collider ? • GSI ? • ….
Muonium (M) Thank You Vernon for providing us the perhaps most Ideal Atom