1 / 14

Clase 137

Clase 137. Función exponencial y logarítmica. Ejercicios. t + 2. ·. f (t) = 3. 1. 9 t. a) Halla el valor de t, tal que f(t) =  27. Ejercicio 1. Sean las funciones :. g(x) = log 6 x + log 6 (x – 1). b) Determina el dominio de f y g. c) Esboce el gráfico de f. t + 2. ·.

lorant
Download Presentation

Clase 137

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Clase 137 Función exponencial y logarítmica. Ejercicios.

  2. t + 2 · f (t) = 3 1 9t a) Halla el valor de t, tal que f(t) =  27. Ejercicio 1 Sean las funciones : g(x) = log6x + log6(x – 1) b) Determina el dominio de f yg. c) Esboce el gráfico de f.

  3. t + 2 · f (t) = 3 1 1 = 27 9t 9t 3t +2 – 2t = 3 1 3 3 · 2 2 32t t + 2 · 3 3t +2 = 3 1,5 32 – t =3 t = 0,5 2 – t = 1,5

  4. t + 2 · f (t) = 3 1 9t b) Determina el dominio de f y g g(x) = log6x + log6(x – 1) Dom f: t x  0 y x 1 Dom g: x; x 1 0 1

  5. t – 2 f(t) = 1 3 1 f(t) = 3t+2 · 9t f(t) = 32 – t c) y f(t) = 3t+2 · 3–2t f(t) = 3t+2– 2t f(t) = 32– t 1 0 t 2

  6. Ejercicio 2 Sean las funciones: m(x) =log4(x + 5)2 h(x) = log2(x – 2 ) + 1 a) Calcula los ceros de h y esboza su gráfico. b) Determina los valores reales para los cuales m y h toman el mismo valor.

  7. h(x) = log2(x – 2 ) + 1 log2(x – 2 ) + 1 = 0 log2(x – 2 ) = – 1 x – 2 = 2– 1 x = 0,5 + 2 x = 2,5 El cero de la función h es x = 2,5.

  8. h(x) = log2(x – 2 ) + 1 y 2 1 x 0 2 3 1

  9. x + 5 log2 = 1 x – 2 1 1 2 2 log2(x – 2 ) + 1 log4(x + 5)2 = b) log2(x – 2 ) + 1 log2(x + 5)2 = 2 log2(x – 2 ) + 1 log2(x + 5)2 = log2(x – 2 )+ 1 log2 (x + 5)2 = log2(x + 5) – log2(x – 2) = 1

  10. log2 = 1 x + 5 x + 5 x – 2 x – 2 = 2 x + 5 = 2(x – 2) x + 5 = 2x – 4 x = 9 ¡Compruébala!

  11. Ejercicio 3 Dadas las funciones: p(x) = 2log(x – 2) · 40,5log(x– 2) k(x) = log3(x2 – 1) Determina los valores de x para los cuales p(x) = k(2).

  12. k(x) = log3(x2 – 1) k(2) = log3(22 – 1) k(2) = 1 k(2) = log33 p(x) = 2log(x – 2) · 40,5log(x– 2) 2log(x – 2) · 40,5log(x– 2) = 1 2log(x – 2) ·(2)2(0,5log(x– 2)) = 20 2log(x – 2)+ log(x– 2) = 20 22log(x – 2)= 20

  13. 22log(x – 2) = 20 2 log(x – 2) = 0 log(x – 2)= 0 x – 2 = 100 x – 2 = 1 x = 3

  14. 3.Dada la función : p(x) = log x2 + 2x Para el estudio individual 1.Ejercicio 19 pág. 55 L.T. Onceno grado. 2.Ejercicio 24 pág. 55 L.T. Onceno grado. Demuestra que (qop)(x)= x2 + 2x si q(x) = 102x.

More Related