1 / 16

Status Reports 05/08/13

Status Reports 05/08/13. Kittikul Kovitanggoon Texas Tech. Event Filter Efficiency. - The number of differential cross section in function jet multiplicity is 2-6% off from main analysis. - Checking the filter efficiency in order to correct the luminosity of data.

lorie
Download Presentation

Status Reports 05/08/13

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Status Reports 05/08/13 Kittikul Kovitanggoon Texas Tech

  2. Event Filter Efficiency - The number of differential cross section in function jet multiplicity is 2-6% off from main analysis. - Checking the filter efficiency in order to correct the luminosity of data. - Taking the ratio between with and without filters process.scrapingVeto* process.primaryVertexFilter* process.HBHENoiseFilter* - Without filters, we have 4125.7 events/pb-1 - With filters, we have 4091.581 event/pb-1 - The efficiency is 0.991730131 - Also, fixed the misplace background.

  3. Njets

  4. Njets Bayes n jet=1 dSigma/dN=59.7235 n jet=2 dSigma/dN=12.461 n jet=3 dSigma/dN=2.44284 n jet=4 dSigma/dN=0.45098 n jet=5 dSigma/dN=0.0903426 n jet=6 dSigma/dN=0.0118748 n jet=7 dSigma/dN=0.00256435

  5. Analysis Note - Analysis note is on the process of writing. - Add some sections + plots.

  6. Jet PU MVA Data No MVA njet=0 events=6.73389e+06 njet=1 events=1.09789e+06 njet=2 events=237604 njet=3 events=47987 njet=4 events=9727 njet=5 events=1922 njet=6 events=328 njet=7 events=54 Loose MVA njet=0 events=6.77538e+06 njet=1 events=1.06871e+06 njet=2 events=228155 njet=3 events=45752 njet=4 events=9270 njet=5 events=1808 njet=6 events=308 njet=7 events=53 Tight MVA njet=0 events=6.84967e+06 njet=1 events=1.01825e+06 njet=2 events=210566 njet=3 events=41115 njet=4 events=8021 njet=5 events=1525 njet=6 events=252 njet=7 events=41

  7. Jet PU MVA Signal MC No MVA njet=0 events=2.98548e+06 njet=1 events=469430 njet=2 events=97152.6 njet=3 events=18260.1 njet=4 events=3532.94 njet=5 events=561.383 njet=6 events=94.5587 njet=7 events=14.576 Loose MVA njet=0 events=2.99982e+06 njet=1 events=458895 njet=2 events=94003.9 njet=3 events=17645.4 njet=4 events=3407.08 njet=5 events=539.343 njet=6 events=91.344 njet=7 events=13.5019 Tight MVA njet=0 events=3.02228e+06 njet=1 events=443081 njet=2 events=88882.6 njet=3 events=16295.8 njet=4 events=3113.08 njet=5 events=472.248 njet=6 events=82.402 njet=7 events=13.1739

  8. Back Up

  9. pT 1st jet

  10. pT 1st jet Bayes jet pT=30-40 dSigma/dpT=2.54153 jet pT=40-52 dSigma/dpT=1.451 jet pT=52-68 dSigma/dpT=0.808864 jet pT=68-88 dSigma/dpT=0.41331 jet pT=88-113 dSigma/dpT=0.194021 jet pT=113-144 dSigma/dpT=0.0883231 jet pT=144-184 dSigma/dpT=0.0357432 jet pT=184-234 dSigma/dpT=0.0137341 jet pT=234-297 dSigma/dpT=0.00523787 jet pT=297-377 dSigma/dpT=0.00162346 jet pT=377-480 dSigma/dpT=0.000493253

  11. pT 2nd jet

  12. pT 2nd jet Bayes jet pT=30-40 dSigma/dpT=0.681495 jet pT=40-52 dSigma/dpT=0.310099 jet pT=52-68 dSigma/dpT=0.139994 jet pT=68-88 dSigma/dpT=0.0613579 jet pT=88-113 dSigma/dpT=0.027411 jet pT=113-144 dSigma/dpT=0.0119028 jet pT=144-184 dSigma/dpT=0.00466968 jet pT=184-234 dSigma/dpT=0.00178095 jet pT=234-297 dSigma/dpT=0.000701831 jet pT=297-377 dSigma/dpT=0.00023195

  13. Eta 1st jet

  14. Eta 1st jet Bayes jet eta=-2.4 - -2.2 dSigma/deta=7.90703 jet eta=-2.2 - -2 dSigma/deta=9.30543 jet eta=-2 - -1.8 dSigma/deta=10.7622 jet eta=-1.8 - -1.6 dSigma/deta=12.1829 jet eta=-1.6 - -1.4 dSigma/deta=13.7685 jet eta=-1.4 - -1.2 dSigma/deta=15.5961 jet eta=-1.2 - -1 dSigma/deta=17.1706 jet eta=-1 - -0.8 dSigma/deta=18.3575 jet eta=-0.8 - -0.6 dSigma/deta=19.4455 jet eta=-0.6 - -0.4 dSigma/deta=19.8732 jet eta=-0.4 - -0.2 dSigma/deta=20.7432 jet eta=-0.2 - 0 dSigma/deta=20.6351 jet eta=0 - 0.2 dSigma/deta=20.8275 jet eta=0.2 - 0.4 dSigma/deta=20.5311 jet eta=0.4 - 0.6 dSigma/deta=19.8683 jet eta=0.6 - 0.8 dSigma/deta=19.4114 jet eta=0.8 - 1 dSigma/deta=18.3719 jet eta=1 - 1.2 dSigma/deta=17.4825 jet eta=1.2 - 1.4 dSigma/deta=15.6802 jet eta=1.4 - 1.6 dSigma/deta=13.6064 jet eta=1.6 - 1.8 dSigma/deta=12.4261 jet eta=1.8 - 2 dSigma/deta=10.8392 jet eta=2 - 2.2 dSigma/deta=9.69227 jet eta=2.2 - 2.4 dSigma/deta=7.95701

  15. Eta 2nd jet

  16. Eta 2nd jet Bayes jet eta=-2.4 - -2.2 dSigma/deta=2.10667 jet eta=-2.2 - -2 dSigma/deta=2.22449 jet eta=-2 - -1.8 dSigma/deta=2.57891 jet eta=-1.8 - -1.6 dSigma/deta=2.66274 jet eta=-1.6 - -1.4 dSigma/deta=2.96945 jet eta=-1.4 - -1.2 dSigma/deta=3.18708 jet eta=-1.2 - -1 dSigma/deta=3.46698 jet eta=-1 - -0.8 dSigma/deta=3.68425 jet eta=-0.8 - -0.6 dSigma/deta=3.88112 jet eta=-0.6 - -0.4 dSigma/deta=3.81791 jet eta=-0.4 - -0.2 dSigma/deta=4.00887 jet eta=-0.2 - 0 dSigma/deta=3.88695 jet eta=0 - 0.2 dSigma/deta=4.05213 jet eta=0.2 - 0.4 dSigma/deta=3.81493 jet eta=0.4 - 0.6 dSigma/deta=3.87524 jet eta=0.6 - 0.8 dSigma/deta=3.71031 jet eta=0.8 - 1 dSigma/deta=3.80595 jet eta=1 - 1.2 dSigma/deta=3.39447 jet eta=1.2 - 1.4 dSigma/deta=3.24747 jet eta=1.4 - 1.6 dSigma/deta=2.96745 jet eta=1.6 - 1.8 dSigma/deta=2.85722 jet eta=1.8 - 2 dSigma/deta=2.62035 jet eta=2 - 2.2 dSigma/deta=2.3338 jet eta=2.2 - 2.4 dSigma/deta=2.08618

More Related