240 likes | 405 Views
LHC Inner Triplet Powering Strategy. LHC phase 0 - history - status LHC phase 1 - understanding - wishes. Frédérick BORDRY. Q3. Q1. Q2a. Q2b. Inner triplet. Identical in term of powering in the 4 points. Prototype low- quadrupole. MQXA (KEK) Aperture 70 mm 205 T/m
E N D
LHC Inner Triplet Powering Strategy LHC phase 0 - history - status LHC phase 1 - understanding - wishes Frédérick BORDRY
Q3 Q1 Q2a Q2b Inner triplet Identical in term of powering in the 4 points
Prototype low- quadrupole MQXA (KEK) Aperture 70 mm 205 T/m I = 6450 A Iultimate = 7 kA L1= 91 mH (Stored energy: 2.3 MJ)
Prototype MQXB being readied for cryostat insertion MQXB (Fermilab) 205 T/m I = 11390 A (Iultimate = 12290A) L2= 18.5 mH (Stored energy: 1.4 MJ)
Vcv1 Vcv3 Vcv2 12kA 8kA 8kA 3 1 2 2 MQXA MQXB MQXB MQXA IK = 7 kA IF = = 11. 5 kA IK = 7 kA MQXA (KEK) Aperture 70 mm 205 T/m Inom = 6450 A (Iultimate = 7 kA) L1= 91 mH (Stored energy: 2.3 MJ) MQXB (Fermilab) Aperture 70 mm 205 T/m Inom = 11390 A (Iultimate = 12290A) L2= 18.5 mH (Stored energy: 1.4 MJ)
Vcv1 MQXA MQXB MQXB MQXA Vcv2 12kA 8kA IK = 7 kA IF = = 11. 5 kA IK = 7 kA 3 1 2 2
I1 Vcv1 Vcv2 6kA 8kA I2 MQXA MQXB MQXB MQXA IK = I1 = 7 kA IF = I1 +I2 = 11. 5 kA IK = I1 = 7 kA 3 1 2 2
I1 Vcv1 Vcv2 6kA 8kA I2 r1/2 r1/2 r2/2 r2/2 L2/2 L2/2 L1/2 L1/2 Inductive coupling 3 1 2 2 KEK KEK Fermilab Fermilab IF = I1 +I2 IK = I1 Inner Triplet : nested power converters I1
2 kA , 8 V 6 kA, 8V 2 kA , 8 V 2 kA , 8 V 2 kA , 8 V Current sources in parallel 2kA , 8V 2kA , 8V 2kA , 8V 2kA , 8V Global Electronics AC connection Water distribution 1- Fast internal current source FCLB ~ 10 kHz 2- Global voltage loop FCLB ~ 1 kHz 3- High precision current loop (DCCT) FCLB ~ 0.1 - 1 Hz
Dcct 1 DSP 1 ADC Converter 1 Vconv1 8kA Ikref = I1ref Reg . 1 Voltage source DAC Analog Vref1 Digital decouplind card Vconv1 = V1ref + k1v. V2ref + Vref2 K1i. I2 Vconv2 = V2ref + k2v. V1ref + K2i. i1 DSP 2 Converter 2 - I2ref Reg . 2 DAC 6kA + IFref Vconv2 Voltage source ADC Dcct 2 Digital
8kA/t1=380s 6kA/t2 =50s 7kA t=400s 1000A -1kA 1.2ks Vcv3 ifwd3=0 1 kA/t2 =70s 600A Converter fault : All converters are stopped The heaters “must” be fired when there is a FWD water fault LQ1-Q3 91 mH ; t1 = 220 / 0.6 380 s LQ2 18.5 mH ; t2 = 37 / 0.8 50 s I1 Vcv1 Vcv2 6kA 8kA I2 3 1 2 2 KEK Fermilab KEK Fermilab IF = I1 +I2 IK = I1
8kA/td= 0.5s I1 Vcv1 Vcv2 6kA 8kA I2 im3 im2 3 1 2 im1 Vcv3 IF = I1 +I2 IK = I1 ±600A Magnet quench
LHC phase 0 : present status • As a result of the tests completed to date, the control of the nested power converters seems to fulfil all the performance requirements of the LHC inner triplet system. • Same installation in 1 ,2, 5 and 8. • The inner triplet converters are standard LHC converters but dedicated protection devices are required.
MQXC MQXC MQXC MQXC LHC phase 1 MQXC (from PAC07 paper) Aperture 130 mm 122 T/m I = 12’270 A Iultimate = ? L1= 67.5 mH (Stored energy: 5.1 MJ per magnet ; 75% of LHC main dipole magnet) 1 2a 2b 3
Vcv1 13kA MQXC MQXC MQXC MQXC 3 1 2b 2a IQ3 = 12.3 kA IQ2 = = 12. 3 kA IQ1 = 12.3 kA • Cost • Easy to control • Volume • but • - No flexibility (IQ1=IQ2a=IQ2b=IQ3) • Quench protection • String test
Vcv2b Vcv2a Vcv1 Vcv3 13kA 13kA 13kA 13kA 3 1 2b 2a MQXC MQXC MQXC MQXC IQ3 = 12.3 kA IQ2 = = 12. 3 kA IQ1 = 12.3 kA • Full flexibility (easy to control ) • Easy for quench protection (no heater, no extraction) • no string test • but • - Cost ( f[voltage] => distance from DFB) • - volume
Vcv1 Vcv3 Vcv2 13kA 13kA 13kA 3 1 2b 2a MQXC MQXC MQXC MQXC IQ3 = 12.3 kA IQ2 = = 12. 3 kA IQ1 = 12.3 kA • Flexibility (easy to control but IQ2a = IQ2b) • Easy for quench protection for Q1 and Q3 (no heater, no extraction) • Q2? (extraction system? Quench heaters?) • but • - Cost • Volume
Vcv1 Vcv2 13kA 13kA 3 1 2b 2a MQXC MQXC MQXC MQXC IQ3 = 12.3 kA IF = = 12. 3 kA IQ1 = 12.3 kA • Easy to control • Two identical strings • quench protection for Q1 and Q3 (heaters ? , extractions ?) • but • - IQ1 = IQ3 and IQ2a = IQ2b (Possible to add trims on Q1 or Q3 ? How many % ?)