1 / 24

Frédérick BORDRY

LHC Inner Triplet Powering Strategy. LHC phase 0 - history - status LHC phase 1 - understanding - wishes. Frédérick BORDRY. Q3. Q1. Q2a. Q2b. Inner triplet. Identical in term of powering in the 4 points. Prototype low-  quadrupole. MQXA (KEK) Aperture 70 mm 205 T/m

lottie
Download Presentation

Frédérick BORDRY

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. LHC Inner Triplet Powering Strategy LHC phase 0 - history - status LHC phase 1 - understanding - wishes Frédérick BORDRY

  2. Q3 Q1 Q2a Q2b Inner triplet Identical in term of powering in the 4 points

  3. Prototype low- quadrupole MQXA (KEK) Aperture 70 mm 205 T/m I = 6450 A Iultimate = 7 kA L1= 91 mH (Stored energy: 2.3 MJ)

  4. Prototype MQXB being readied for cryostat insertion MQXB (Fermilab) 205 T/m I = 11390 A (Iultimate = 12290A) L2= 18.5 mH (Stored energy: 1.4 MJ)

  5. Vcv1 Vcv3 Vcv2 12kA 8kA 8kA 3 1 2 2 MQXA MQXB MQXB MQXA IK = 7 kA IF = = 11. 5 kA IK = 7 kA MQXA (KEK) Aperture 70 mm 205 T/m Inom = 6450 A (Iultimate = 7 kA) L1= 91 mH (Stored energy: 2.3 MJ) MQXB (Fermilab) Aperture 70 mm 205 T/m Inom = 11390 A (Iultimate = 12290A) L2= 18.5 mH (Stored energy: 1.4 MJ)

  6. Vcv1 MQXA MQXB MQXB MQXA Vcv2 12kA 8kA IK = 7 kA IF = = 11. 5 kA IK = 7 kA 3 1 2 2

  7. I1 Vcv1 Vcv2 6kA 8kA I2 MQXA MQXB MQXB MQXA IK = I1 = 7 kA IF = I1 +I2 = 11. 5 kA IK = I1 = 7 kA 3 1 2 2

  8. I1 Vcv1 Vcv2 6kA 8kA I2 r1/2 r1/2 r2/2 r2/2 L2/2 L2/2 L1/2 L1/2 Inductive coupling 3 1 2 2 KEK KEK Fermilab Fermilab IF = I1 +I2 IK = I1 Inner Triplet : nested power converters I1

  9. 2 kA , 8 V 6 kA, 8V 2 kA , 8 V 2 kA , 8 V 2 kA , 8 V Current sources in parallel 2kA , 8V 2kA , 8V 2kA , 8V 2kA , 8V Global Electronics AC connection Water distribution 1- Fast internal current source FCLB ~ 10 kHz 2- Global voltage loop FCLB ~ 1 kHz 3- High precision current loop (DCCT) FCLB ~ 0.1 - 1 Hz

  10. Dcct 1 DSP 1 ADC Converter 1 Vconv1 8kA Ikref = I1ref Reg . 1 Voltage source DAC Analog Vref1 Digital decouplind card Vconv1 = V1ref + k1v. V2ref + Vref2 K1i. I2 Vconv2 = V2ref + k2v. V1ref + K2i. i1 DSP 2 Converter 2 - I2ref Reg . 2 DAC 6kA + IFref Vconv2 Voltage source ADC Dcct 2 Digital

  11. 8kA/t1=380s 6kA/t2 =50s 7kA t=400s 1000A -1kA 1.2ks Vcv3 ifwd3=0 1 kA/t2 =70s 600A  Converter fault : All converters are stopped The heaters “must” be fired when there is a FWD water fault LQ1-Q3 91 mH ; t1 = 220 / 0.6  380 s LQ2  18.5 mH ; t2 = 37 / 0.8  50 s I1 Vcv1 Vcv2 6kA 8kA I2 3 1 2 2 KEK Fermilab KEK Fermilab IF = I1 +I2 IK = I1

  12. 8kA/td= 0.5s I1 Vcv1 Vcv2 6kA 8kA I2 im3 im2 3 1 2 im1 Vcv3 IF = I1 +I2 IK = I1 ±600A  Magnet quench

  13. LHC phase 0 : present status • As a result of the tests completed to date, the control of the nested power converters seems to fulfil all the performance requirements of the LHC inner triplet system. • Same installation in 1 ,2, 5 and 8. •  The inner triplet converters are standard LHC converters but dedicated protection devices are required.

  14. Point 1

  15. Point 1

  16. Point 1

  17. Point 5

  18. Point 5

  19. Point 5

  20. MQXC MQXC MQXC MQXC LHC phase 1 MQXC (from PAC07 paper) Aperture 130 mm 122 T/m I = 12’270 A Iultimate = ? L1= 67.5 mH (Stored energy: 5.1 MJ per magnet ; 75% of LHC main dipole magnet) 1 2a 2b 3

  21. Vcv1 13kA MQXC MQXC MQXC MQXC 3 1 2b 2a IQ3 = 12.3 kA IQ2 = = 12. 3 kA IQ1 = 12.3 kA • Cost • Easy to control • Volume • but • - No flexibility (IQ1=IQ2a=IQ2b=IQ3) • Quench protection • String test

  22. Vcv2b Vcv2a Vcv1 Vcv3 13kA 13kA 13kA 13kA 3 1 2b 2a MQXC MQXC MQXC MQXC IQ3 = 12.3 kA IQ2 = = 12. 3 kA IQ1 = 12.3 kA • Full flexibility (easy to control ) • Easy for quench protection (no heater, no extraction) • no string test • but • - Cost ( f[voltage] => distance from DFB) • - volume

  23. Vcv1 Vcv3 Vcv2 13kA 13kA 13kA 3 1 2b 2a MQXC MQXC MQXC MQXC IQ3 = 12.3 kA IQ2 = = 12. 3 kA IQ1 = 12.3 kA • Flexibility (easy to control but IQ2a = IQ2b) • Easy for quench protection for Q1 and Q3 (no heater, no extraction) • Q2? (extraction system? Quench heaters?) • but • - Cost • Volume

  24. Vcv1 Vcv2 13kA 13kA 3 1 2b 2a MQXC MQXC MQXC MQXC IQ3 = 12.3 kA IF = = 12. 3 kA IQ1 = 12.3 kA • Easy to control • Two identical strings • quench protection for Q1 and Q3 (heaters ? , extractions ?) • but • - IQ1 = IQ3 and IQ2a = IQ2b (Possible to add trims on Q1 or Q3 ? How many % ?)

More Related