550 likes | 865 Views
Meshless parameterization and surface reconstruction. Reporter: Lincong Fang 16th May, 2007. Parameterization. Problem : Given a surface S in R 3 , find a one-to-one function f : D-> R 3 , D R 2 , such that the image of D is S. . D. f. S. Surface Reconstruction.
E N D
Meshless parameterization and surface reconstruction Reporter: Lincong Fang 16th May, 2007
Parameterization • Problem: Given a surface S in R3, find a one-to-one function f : D-> R3, D R2, such that the image of D is S. D f S
Surface Reconstruction • Problem: Given a set of unorganized points, approximate the underlying surface.
Related Works • Surface reconstruction • Delaunay / Voronoi based • Implicit methods • Provable • Parameterization for organized point set f
Mesh Parameterization • There are many papers
Papers • Meshless parameterization and surface reconstruction • Michael S. Floater, Martin Reimers, CAGD 2001 • Meshless parameterization and B-spline surface approximation • Michael S. Floater, in The Mathematics of Surfaces IX, Springer-Verlag (2000) • Efficient Triangulation of point clouds using floater parameterization • Tim Volodine, Dirk Roose, Denis Vanderstraeten, Proc. of the Eighth SIAM Conference on Geometric Design and Computing • Triangulating point clouds with spherical topology • Kai Hormann, Martin Reimers, Proceedings of. Curve and Surface Design, 2002 • Meshing point clouds using spherical parameterization • M. Zwicker, C. Gotsman, Eurographics 2004 • Meshing genus-1 point clouds using discrete one-forms • Geetika Tewari, Craig Gotsman, Steven J. Gortler, Computers & Graphics 2006 • Meshless thin-shell simulation based on global conformal parameterization • Xiaohu Guo, Xin Li, Yunfan Bao, Xianfeng Gu, Hong Qin, IEEE ToV and CG 2006
Basic Idea • Given X=(x1, x2,…, xn) in R3, compute U = (u1, u2,…, un) in R2 • Triangulate U • Obtain both a triangulation and a parameterization for X
Compute U • Assumptions • X are samples from a 2D surface • Topology is known • Desirable property • Points closed by in U are close by in X
Meshless parameterization and surface reconstruction • Authors: • Michael S. Floater • Martin Reimers • Computer Aided Geometric Design 2001 Main reference : Parameterization and smooth approximation of surface triangulations, Michael S. Floater, CAGD 1997
Convex Contraints • Boundary condition : map boundary of X to points on a unit circle • If xj’s are neighbors of xi then require ui to be a strictly convex combination of uj’s • Solve resulting linear system Au = b
Identify Boundary • Use natural boundary • (given as part of the data) • Choose a boundary manually • Compute boundary • Identify boundary points • Order boundary points : curve reconstruction
Compute Boundary • Identify boundary points • Order boundary points
Neighbors and Weights • Ball neighborhoods • Radius is fixed • K nearest neighborhoods • Weights • Uniform weights • Reciprocal distance weights • Shape preserving weights
Uniform Weights • Uniform weights : (minimizing ) • IfNi ∪{i} = Nk ∪{k}, then ui=uk
Reciprocal Distance Weights • Weights: • Observation: • Minimizing • Chord parameterization for curves • Distinct parameter points • Well behaved triangulation
CPU Usage • Reciprocal distance weights • Shape preserving weights
Effect of Noise Noise added Reciprocal distance weight No Noise
Meshless parameterization and B-spline surface approximation • Author: • Michael S. Floater • in The Mathematics of Surfaces IX, R. Cipolla and R. Martin (eds.), Springer-Verlag (2000)
Meshless Parameterization Point set Meshless parameterization
Triangulation Delaunay triangulation Surface triangulation
Reparameterization Shape-preserving parameterization Spline surface
Retriangulation Delaunay retriangulation Surface retriangulation
Example Point set Triangulation Spline surface
Example Point set Triangulation Spline surface
Efficient triangulation of point clouds using Floater Parameterization • Authors: • Tim Volodine • Dirk Roose • Denis Vanderstraeten • Proc. of the Eighth SIAM Conference on Geometric Design and Computing Main reference : Mean value coordinates, Michael S. Floater, CAGD 2003
Boundary Extraction Boundary points :
Triangulating point clouds with spherical topology • Authors: • Kai Hormann • Martin Reimers • Proceedings of. Curve and Surface Design 2002
Partition Shortest path Correspond to the edges of D 12 nearest neighbors Point set
Optimization Optimizing 3D triangulations using discrete curvature analysis Dyn N., K. Hormann, S.-J. Kim, and D. Levin
Meshing point clouds using spherical parameterization • Authors: • Matthias Zwicker • Craig Gotsman • Eurographics Symposium on Point-Based Graphics 2004 Main references : Fundamentals of spherical parameterization for 3d meshes Gotsman C., Gu X., Sheffer A. SiG 2003 Computing conformal structures of surfaces Gu X., Yau S.-T. Communications in Information and Systems 2002
Meshing genus-1 point clouds using discrete one-forms • Authors: • Geetika Tewari • Craig Gotsman • Steven J. Gortler • Computers & Graphics 2006 Main references : Computing conformal structures of surfaces Gu X., Yau S.-T. Communications in Information and Systems 2002 Discrete one-forms on meshes and applications to 3D mesh parameterization Gortler SJ, Gotsman C, Thurston D. CAGD 2006
MCB Cycles on a KNNG One Forms on Arbitrary Graph MCB : Minimal cycle basis O(E3) time Trivial cycle Nontrivial cycle