1 / 17

C7 – Asymptotes of Rational and Other Functions

C7 – Asymptotes of Rational and Other Functions. IB Math HL/SL - Santowski. (A) Introduction. To help make sense of any of the following discussions, graph all equations and view the resultant graphs as we discuss the concepts

lotus
Download Presentation

C7 – Asymptotes of Rational and Other Functions

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. C7 – Asymptotes of Rational and Other Functions IB Math HL/SL - Santowski MCB4U - Santowski

  2. (A) Introduction • To help make sense of any of the following discussions, graph all equations and view the resultant graphs as we discuss the concepts • It may also be helpful to use the graphing technology to generate a table of values as you view the graphs • Use either WINPLOT or a GDC MCB4U - Santowski

  3. (A) Review of Rational Functions • A rational number is a number that can be written in the form of a fraction. So likewise, a rational function is function that is presented in the form of a fraction. •  We have seen two examples of rational functions in this course   we can generate a graph of polynomials when we divide them in our work with the Factor Theorem  i.e. Q(x) = (x3 - 2x + 1)/(x - 1). If x-1 was a factor of P(x), then we observed a hole in the graph of Q(x). If x-1 was not a factor of P(x), then we observed an asymptote in the graph of Q(x) MCB4U - Santowski

  4. (A) Review of Rational Functions MCB4U - Santowski

  5. (A) Review of Rational Functions We have seen several examples of rational functions in this course, when we investigated the reciprocal functions of linear fcns, i.e. f(x) = 1/(x + 2) and quadratic fcns, i.e. g(x) = 1/(x2 - 3x - 10) and the tangent function y = tan(x). MCB4U - Santowski

  6. (B) Domain, Range, and Zeroes of Rational Functions • Given the rational function r(x) = n(x)/d(x) , • The domain of rational functions involve the fact that we cannot divide by zero. Therefore, any value of x that creates a zero denominator is a domain restriction. Thus in r(x), d(x) cannot equal zero. • For the zeroes of a rational function, we simply consider where the numerator is zero (i.e. 0/d(x) = 0). So we try to find out where n(x) = 0 • To find the range, we must look at the various sections of a rational function graph and look for max/min values • EXAMPLES: Graph and find the domain, range, zeroes of • f(x) = 7/(x + 2), • g(x) = x/(x2 - 3x - 4), and • h(x) = (2x2 + x - 3)/(x2 - 4) MCB4U - Santowski

  7. (B) Domain, Range, and Zeroes of Rational Functions • EXAMPLES: Graph and find the domain, range, zeroes of • f(x) = 7/(x + 2), • g(x) = x/(x2 - 3x - 4), and • h(x) = (2x2 + x - 3)/(x2 - 4) MCB4U - Santowski

  8. (C) Vertical and Horizontal Asymptotes • Illustrate with a graph of y = 1/x and draw several others (i.e. pg 348) • A vertical asymptote occurs when the value of the function increases or decreases without bound as the value of x approaches a from the right and from the left. • We symbolically present this as f(x)  +∞ as x  a+ or x  a- • We re-express this idea in limit notation  lim x  a+ f(x) = +∞ • A horizontal asymptotes occurs when a value of the function approaches a number, L, as x increases or decreases without bound. • We symbolically present this as as f(x)  + a as x  + ∞ or x  - ∞ • We can re-express this idea in limit notation  lim x  ∞f(x) = a MCB4U - Santowski

  9. (D) Finding the Equations of the Asymptotes • To find the equation of the vertical asymptotes, we simply find the restrictions in the denominator and there is our equation of the asymptote i.e. x = a • To find the equation of the horizontal asymptotes, we can work through it in two manners. First, we can prepare a table of values and make the x value larger and larger positively and negatively and see what function value is being approached • The second approach, is to rearrange the equation to make it more obvious as to what happens when x gets infinitely positively and negatively. MCB4U - Santowski

  10. (D) Finding the Equations of the Asymptotes • ex. Find the asymptotes of y = (x+2)/(3x-2) • So we take lim x  2/3+ f(x) = + ∞ and lim x  2/3- f(x) = - ∞ thus we have an asymptote at x = 2/3 • To find the horizontal asymptote  a table of values (or simply large values for x) returns the following values: • x = 109 f(109) = 0.3333333342 or close to 1/3 • x = -(109)  f(-(109)) = 0.3333333342 or close to 1/3 MCB4U - Santowski

  11. (D) Finding the Equations of the Asymptotes • Alternatively, we can find the horizontal asymptotes of y = (x+2)/(3x-2) using algebraic methods  divide through by the x term with the highest degree • as x  +∞, then 2/x  0 MCB4U - Santowski

  12. (E) Examples • Further examples to do  Find vertical and horizontal asymptotes for: • y = (4x)/(x2+1) • y = (2-3x2)/(1-x2) • y = (x2 - 3)/(x+5) MCB4U - Santowski

  13. (E) Examples y = (4x)/(x2+1) y = (2-3x2)/(1-x2) y = (x2 - 3)/(x+5) MCB4U - Santowski

  14. (F) Graphing Rational Functions • If we want to graph rational functions (without graphing technology), we must find out some critical information about the rational function. If we could find the asymptotes, the domain and the intercepts, we could get a sketch of the graph • ex => f(x) = (x2)/(x3-2x2 - 5x + 6) • NOTE: after finding the asymptotes (at x = -2, 1,3) we find the behaviour of the fcn on the left and the right of these asymptotes by considering the sign of the ∞ of f(x). MCB4U - Santowski

  15. (F) Oblique Asymptotes • Some asymptotes that are neither vertical or horizontal => they are slanted. These slanted asymptotes are called oblique asymptotes. • Ex. Graph the function f(x) = (x2 - x - 6)/(x - 2) (which brings us back to our previous work on the Factor Theorem and polynomial division) • Recall, that we can do the division and rewrite f(x) = (x2 - x - 6)/(x - 2) as f(x) = x + 1 - 4/(x - 2). • Again, all we have done is a simple algebraic manipulation to present the original equation in another form. • So now, as x becomes infinitely large (positive or negative), the term 4/(x - 2) becomes negligible i.e. = 0. • So we are left with the expression y = x + 1 as the equation of the oblique asymptote. MCB4U - Santowski

  16. (G) Internet Links • Rational Functions from WTAMU • Calculus@UTK 2.5 - Limits Involving Infinity • Calculus I (Math 2413) - Limits - Limits Involving Infinity from Paul Dawkins • Limits Involving Infinity from P.K. Ving MCB4U - Santowski

  17. (G) Homework • MCB4U: • DAY 1; Nelson text, p356, Q1-4 • DAY 2; Nelson text, p357, Q10,11,12,14,15 • IB Math HL/SL: • Stewart, 1989, Chap 5.1, p212, Q2,3 • Stewart, 1989, Chap 5.2, p222, Q2-6 • Stewart, 1989, Chap 5.6, p244, Q1,2 MCB4U - Santowski

More Related