220 likes | 415 Views
QCD in the Twenty-First Century. Emergent properties with QCD degrees of freedom! . Higgs (-like) Particle – - Origin of Mass , QCD dof - Standard Model The Theory (2) QCD Emerging Properties – - Confinement, χ C symmetry - QCD Phase Structure
E N D
QCD in the Twenty-First Century Emergent properties with QCD degrees of freedom! Higgs (-like) Particle – - Origin of Mass, QCD dof - Standard Model The Theory (2) QCD Emerging Properties – - Confinement, χC symmetry - QCD Phase Structure - Nucleon helicity structure - … - Non-linear QCD at small-x - …
High-Energy Nuclear Collisionsand QCD Phase StructureNu Xu(1,2)(1) College of Physical Science & Technology, Central China Normal University, Wuhan, 430079, China(2) Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
Exploring the QCD Phase Structure TERHIC, SPS, FAIR 2 Tini, TC LHC, RHIC Phase boundary RHIC,FAIR, NICA 3 1 1 2 3 Hadronic Matter Partonic Matter
QCD Thermodynamics RHICLHC SB Ideal Gas At μB = 0: cross over transition, 150 < Tc < 200 MeV The SB ideal gas limit: T/Tc ~ 107 Tini(LHC) ~ 2-3*Tini(RHIC) Thermodynamic evolutions are similar for RHIC and LHC Zoltan Fodor, Lattice 2007
Jets at SPS, RHIC and LHC Nuclear modification factor: Stronger suppression at higher collision energies RAA ~ 0.5 for charged hadrons at high pT (~100 GeV/c) in central Pb+Pb central collisions
Medium Effects:Quarkoniakey words: thermometer, deconfinement, Debyescreen, regeneration (coalescence)
J/ψ Suppression or Enhancement mid-rapidity forward-rapidity Due to large charm production cross section at LHC and coalescence process, the J/ψ RAA increased in mid-rapidity at central collisions. More such increase is expected in √sNN= 5.5 TeVPb+Pb collisions. Both suppression: “Debye Screening” and the recent observed increase: “Coalescence”, demonstrating the sQGP medium effect.
Model Comparisons mid-rapidity forward-rapidity Models predict yield RAA well. To indentify the production mechanism and study the properties of the medium: shadowing, collectivity, coalescence, etc, study: More see Pengfei’s talk.
Upsilon Productions Temperature measurement? Systematic study transverse momentum dependence of quarkonia productions in high-energy nuclear collisions:
Medium Effects:Collectivitykey words:partonic collectivity, thermalization, perfect liquid
Collectivity vs. Collision Energy Collectivity increase as collision energy √sNN> 39 GeV, partonic dominant √sNN≤ 11 GeV, hadronic dominant STAR data: arXiv:1206.5528 ALICE data: Phys. Rev. Lett. 105, 252302 (2010)
Collectivity ~ Collision Energy ALICE: PRL105, 252302(10); arXiv:1208.1974 STAR: PRC66, 034904(02); PRC72, 014904(05); PHENIX: PRL98, 162301(07); PHOBOS: PRL98, 242302 (07) CERES: NPA698, 253c(02); E877: NPA638, 3c(98); E895: PRL83, 1295(99). STAR Preliminary
Di-electrons: √sNNDependence Di-lepton: penetrating-bulk probe LMR: no significant energy dependence in enhancement Future: focus in 1 < mll < 3 GeV/c2, to - Measure correlated charm contributions - Extract direct radiation information
Future: Partonic Collectivity, Direct Radiation √sNN= 200 GeV Au + Au Collisions Light hadron collectivity: partonic + hadronic (s, c) hadron collectivity: partonic! Di-leptons (m > 1 GeV) collectivity: 1) partonic 2)direct radiation
sQGP and QCD Phase Structure Observations: (1) Azimuthally HBT 1st order phase transition (2) Directed flow v1 1st order phase transition (3) Dynamical correlations partonic vs. hadronic dof (4) v2 - NCQ scaling partonic vs. hadronic dof (5) Fluctuations Critical point, correl. length - http://drupal.star.bnl.gov/STAR/starnotes /public/sn0493 - arXiv:1007.2613 sQGPformed at μB ~ 0: - Collectivity: NCQ scaling in v2, … - Jet-quenching, Quarkonia,γ, … RHIC BES-I Program: - Partonic dominant: √sNN >39 GeV (μB ≤ 100 MeV) - Hadronic dominant: √sNN ≤11.5 GeV (μB ≥ 300 MeV) What is the structure of the QCD phase diagram? - phase boundary? - QCD critical point?
Medium Effects:Critical Pointkey words:QGP phase, hadronic phase, 1st order phase boundary, critical end point, correlation length, critical slowing down...
Higher Moments 1) High moments for conserved quantum numbers: Q, S, B, in high-energy nuclear collisions 2) Sensitive to critical point (ξ correlation length): 3) Direct comparison with Lattice results: Extract susceptibilities and freeze-out temperature. An independent/important test on thermal equilibrium in heavy ion collisions. - A. Bazavov et al. 1208.1220 (NLOTE) - STAR Experiment:PRL105, 22303(2010) - M. Stephanov: PRL102, 032301(2009) - R.V. Gavai and S. Gupta, PLB696, 459(2011) - S. Gupta, et al., Science, 332, 1525(2011) - F. Karsch et al, PLB695, 136(2011) - M.Cheng et al, PRD79, 074505(2009) - Y. Hatta, et al, PRL91, 102003(2003) M. Cheng et al, PRD79, 074505(2009) R. Gavai and S. Gupta, QM2012
Higher Moment: Net-charge STAR Preliminary • - PHENIX: E. O’Brien, QM2012 • - STAR: D. McDonald, QM2012 • HRG Model: K. Redlich et al, privatecommunications, 2011
Net-proton Higher Moments STAR: X.F. Luo, QM2012 STAR net-proton results: All data show deviations below Poisson beyond statistical and systematic errors in the 0-5% most central collisions for κσ2 and Sσ at all energies. UrQMD model show monotonic behavior Higher statistics needed for collisions at √sNN< 20 GeV STAR Preliminary
Summary and Outlook 1) Heavy flavor: (a) NMF for HF jets and hadrons extract transport properties and understand energy loss mechanism (b) Collectivity of HF hadrons thermalization of the medium 2) Di-lepton: pT, v2, RAA, polarization temperature and collectivity of the partonic medium 3) RHIC BES-II/NICA/FAIR at √sNN< 20 GeV exploring QCD phase diagram, search for the possible critical point, quarkyonic matter 4) small-x (forward-y) physics exploring the structure of cold nuclear matter, dynamical evolution from the CNM to sQGP LHC/RHIC provides unique opportunities for exploring matter with QCD degrees of freedom!
研究量子色动力学(QCD)相结构 TE RHIC, SPS 2 Large μB NICA, FAIR, CSR Tini, TC LHC, RHIC 3 1 LHC+RHIC sQGP properties √sNN ~ few TeV NICA/FAIR QCD phase structure √sNN ≤ 12 GeV 1 2 3 Partonic Matter Hadronic Matter RHIC BES-II QCD phase structure and critical point √sNN ≤ 20 GeV Future eRHIC Cold nuclear matter properties e+ ion collisions Emergent properties of QCD matter