1 / 6

GEJALA GELOMBANG

GEJALA GELOMBANG. A. Gelombang berjalan. Yo = Asin θ. Fase gel. Ψ p=(t/T-x/ λ )= θ p/2 π Sudut fase θ p=( ω t- kx ) Beda fase Δψ =( ψ b- ψ a)=-( xb-xa ) λ. V. Yo = Asin ω t Yp = A sin 2 π t/T Yo = A sin 2 πψ Yp = A sin θ p Yp = Asin 2 πψ p Yp = A sin2 π tp /T

louisa
Download Presentation

GEJALA GELOMBANG

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. GEJALA GELOMBANG A. Gelombangberjalan Yo= Asinθ Fase gel. Ψp=(t/T-x/λ)=θp/2π Sudutfaseθp=(ωt-kx) Beda faseΔψ=(ψb-ψa)=-(xb-xa) λ V Yo= Asinωt Yp= A sin 2πt/T Yo= A sin 2πψ Yp= A sin θp Yp= Asin 2πψp Yp= A sin2πtp/T Yp= A sin 2π(t-x/v) T Yp= A sin2π(t/T-x/vT) Yp= A sin2π(t/T-x/λ) Yp= A sin(2πt/T-2πx/λ) {2π/T=ωdan 2π/λ=k} Yp= A sin(ωt-kx) P O X PERSAMAAN UMUM: Titikasal gel merambat Keataskekanan ↓ ↓ Y= ± A sin (ωt kx) ↑ ↑ Titikasal gel merambat Kebawahkekiri Kecepatan V = ± ωA sin (ωt kx) Percepatan a = ± ω2A sin (ωt kx)

  2. B. Gelombangstasioner: a. ujungtetap ; y= 2A sin kxcosωt y= As cosωt As= 2A sin kx Letaksimpul; Xn+1=(2n X λ/4) Letakperut : Xn+1=(2n +1)λ/4 b. Ujung Bebas : y=2A coskx sin ωt y=As sin ωt As=2A coskx Letaksimpul; Xn+1=(2n +1) λ/4) Letakperut : Xn+1=(2n X λ/4) n= 0.1,2,3………

  3. GELOMBANG BUNYI • Frekuensibunyi : • Frekuensi audio manusia : 20 Hz - 20000Hz • Frekuensiinfrasonik <20 Hz • FrekuensiUltrasonik >20000Hz B. Medium Perambatan: 1. Gas→ 2. ZatCair→ 3. Zatpadat→ 4. Dawai/senar→ Keterangan: v=Cepatrambatbunyi(m/s) γ= Konstanta Laplace R= Tetapan gas umum T= Suhu M=Massa satu mol Gas B = modulus bulk zatcair 𝛒=Massa jenis F=Gaya 𝜇=massa per satuanpanjang, 𝜇=m/l

  4. C. Sumber-sumberbunyi: 1. Dawai/senar : a. Frekuensi nada dasar →fo=v/λ→l=1/2λ→λ=2l (Harmonik ke-1) fo= v =√F/𝜇 2l 2l b. Frekuensi nada atas pertama→f1→v/λ→l=λ (Harmonik ke-2) f1= v =√F/𝜇 l l C. Frekuensi nada atas kedua→f2→v/λ→l=(3/2)λ (Harmonik ke-3) f2 = 3v = 3√F/𝜇 2l 2l l=(1/2)λ P S S P P S S S l=λ P P P S S S S l=(3/2)λ d. fn=(n+1)v → Σperut = n+1 2l Σsimpul =n+2 Σsimpul = Σperut + 1 n = 0,1,2,3……

  5. 2. KolomUdara/Pipaorgana a) Terbuka: a. Frekuensi nada dasar →fo=v/λ→l=1/2λ→λ=2l (Harmonik ke-1) fo= v/2l b. Frekuensi nada atas pertama→f1→v/λ→l=λ (Harmonik ke-2) f1= v/l C. Frekuensi nada atas kedua→f2→v/λ→l=(3/2)λ (Harmonik ke-3) f2 = 3v 2l b) Tertutup : a. Frekuensi nada dasar →fo=v/λ→l=1/4λ→λ=4l (Harmonik ke-1) fo= v/4l b. Frekuensi nada atas pertama→f1→v/λ→l=(3/4)λ (Harmonik ke-2) f1= 3v/4l C. Frekuensi nada atas kedua→f2→v/λ→l=(5/4)λ (Harmonik ke-3) f2 = 5v/4l d. fn=(n+1)v → Σperut = n+1 2l Σsimpul =n+2 Σsimpul = Σperut + 1 n = 0,1,2,3……….. d. fn=(2n+1)v → Σperut = Σsimpul = n+1 4l

More Related