1 / 28

Nucleosynthesis in Population III Supernovae and Abundance Patterns of Hyper Metal-Poor Stars

Explore Hyper Metal-Poor Stars, Supernovae of Population III Stars, and comparison with observed stars. Dive into 1-Dimensional Mixing-Fallback model and 2-Dimensional Jet model to analyze abundance data from nucleosynthesis calculations.

Download Presentation

Nucleosynthesis in Population III Supernovae and Abundance Patterns of Hyper Metal-Poor Stars

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Nucleosynthesis in Population III Supernovae and Abundance Patterns of Hyper Metal-Poor Stars N. Tominaga, H. Umeda, K. Maeda, K. Nomoto (Univ. of Tokyo), N. Iwamoto (JAERI)

  2. Contents • Hyper Metal-Poor stars • Supernovae of Population III stars • Comparison with abundance patterns of observed stars • 1-Dimensinal Mixing-Fallback model • 2-Dimensional Jet model

  3. Hyper Metal-Poor Stars

  4. Metal-Poor Stars [Fe/H]= log10(N(Fe)/N(H)) -log10(N(Fe)/N(H))8 • Hyper Metal-Poor (HMP): • Ultra Metal-Poor (UMP): • Extremely Metal-Poor (EMP) : • Very Metal-Poor (VMP): • Solar: [Fe/H] < -5 [Fe/H] < -4 [Fe/H] < -3 [Fe/H] < -2 [Fe/H] ~ 0 (Beers & Christlieb 2005) Compare with results of nucleosynthesis calculations.

  5. Metal-Poor Stars-2 • Reflect abundance patterns of the early Universe • The abundance patterns of ejecta from Pop III or Pop II SNe • A gap exists between EMP stars and HMP stars. HMP • [Fe/H] < -3 stars: • Individual SN yields • [Fe/H] ~ -2.5 stars: • IMF integrated yield of PopIII (or EMP) SNe UMP C-rich EMP EMP

  6. Population III Supernovae

  7. Population III Supernovae Pair-Instability Supernovae 140~300M8 Evolution H He Observationally no evidence H,He O Si Fe Pop III stars 11M8~130M8 BH/NS Core-Collapse Supernovae

  8. Mass Cut Mcut Explosion and Mass Cut Shock Propagation Post-shock T T∝R-3/4E1/4 Fe • High T (T>5×109K) • Fe,α,Ti,Zn,Co,V • Middle T (>T>4×109K) • Fe,Si,Cr,Mn • Low T (>T>3×109K) • Si The boundary between the ejecta and the central remnant

  9. Hypernova and faint SN Nomoto et al. 2003 (astro-ph/0308136) Hypernova Branch Faint SN Branch

  10. Comparison with Abundance Patterns of Observed Stars • HMP stars • HE0107-5240 (Cristlieb et al. 2002) • HE1327-2326 (Frebel, Aoki, et al. 2005) • C-rich EMP stars • CS29498-043 (Aoki et al. 2004) • EMP stars • -4.2<[Fe/H]<-3.5 (Cayrel et al. 2004) • VMP stars • -2.7<[Fe/H]<-2.0 (Cayrel et al. 2004)

  11. 1-Dimensional Mixing-Fallback Model

  12. EMP Stars -4.2<[Fe/H]<-3.5 Hypernova Model: M=25M☉, 2×1052erg Tominaga et al. 2005

  13. Mixing-Fallback Model Mixing region Fallback Fe BH Mixing Region f : ejection factor Mixing Umeda & Nomoto 2002 Fallback

  14. EMP Stars M=25M8,1×1051erg Normal SN -4.2<[Fe/H]<-3.5 f=0.1 Hypernova Model: M=25M☉, 2×1052erg Tominaga et al. 2005

  15. C-rich EMP Stars CS29498-043 f~10-3 Model: M=50M☉, 5×1052erg Umeda & Nomoto 2005

  16. VMP Stars -2.7<[Fe/H]<-2.0 Model: Z=0 IMF integrated (11~70M8) Tominaga et al. 2005

  17. Conclusion (Mixing-Fallback model) Faint SN Normal SN + Hypernova Faint SN Hypernova ~ ~

  18. 2-Dimensional Jet-induced Model

  19. Massive Stars Explosion • Massive stars (M>25M8) • Spherical explosion • Never succeeded, except for Wilson 1985 • Jet-like explosion • Collapsar Model (MacFadyen, Woosley, & Heger 2001) BH/NS

  20. Jet-induced explosion Tominaga et al. 2005 Jet Jet • Hydrodynamics of relativistic jets • Nucleosynthesis BH BH Progenitor cf. Collapsar model (MacFadyen, Woosley, & Heger 2001) MMS=40M8 . Mcut (Mcut=1.75M8) θjet (θjet=5°) vjet (vjet=0.98c, Γjet=5) Ejet (Ejet= Ejet×tjet=1.5×1052erg) fth (fth=Eth/ Ejet=10-3) Ejet: Energy injection rate (Rotation etc.) .

  21. Multi-dimensional relativistic hydrodynamics ←Lorentz factor Conserved quantity (D,S1,S2,S3,τ) ←Density ←Momentum ←Energy ←Equation of continuity ←Conservation of momentum ← Conservation of energy ¨ Marti & Muller 1994

  22. Density structure 1s after 3s after 5s after 10s after

  23. Fallback-Ejection 1D: ejection factor f 2D: Ejet . He Jet materials : O/C Jet fallen-back materials ejected as jets O/Mg Si stellar materials : Fallback Fe materials outside the fallback region

  24. After explosion (100sec) log scale Jet materials 12 Fe Density structure 11 Fe Stellar materials linear scale Fallback 10 10 10.5 11 11.5 12 log10(R)

  25. . . Ejet↓: Fallback↑ M(Fe)↓ [X/Fe]↑ Dependence: Ejet . . Ejet,51=Ejet/1051erg/s . . Ejet,51=15 Ejet,51=0.3 He O/C O/Mg Si Fallback Fallback Fe

  26. . . Ejet,51=1 C-rich EMP stars CS29498-043 Dependence: Ejet . EMP stars Ejet,51=15 -4.2<[Fe/H]<-3.5

  27. Conclusion (Jet Model) C-rich EMP Abundance ratio [X/Y] . • MP stars • EMP stars: Ejet,51=15 • C-rich EMP stars: Ejet,51~1 • HMP stars: Ejet,51=0.15 • UMP stars (-5<[Fe/H]<-4) • EMP stars: Ejet,51>1 • HMP stars: Ejet,51<0.5 . . HMP Ejet,51 EMP . M(Fe)star M(Fe)jet EMP UMP Fe Mass [M8] . Few stars . HMP . Ejet,51

  28. Summary • Both of the 1D & 2D models can reproduce the observations. . . . . • The properties of 2D Jet model • The f in 1D model corresponds to the Ejet. • The absence of UMP stars can be understood by the narrow range of Ejet. . .

More Related