130 likes | 157 Views
Supernova Nucleosynthesis and Extremely Metal-Poor Stars. Nozomu Tominaga (Univ. of Tokyo). Collaborators: H.Umeda, K.Maeda, N.Iwamoto, K.Nomoto. OMEG07, 4-7 Dec. 2007, Hokkaido Univ. Core-Collapse SNe. Core collapse Compact object n emission Energy deposition. Massive Star (>10M 8 )
E N D
Supernova Nucleosynthesis and Extremely Metal-Poor Stars Nozomu Tominaga (Univ. of Tokyo) Collaborators: H.Umeda, K.Maeda, N.Iwamoto, K.Nomoto OMEG07, 4-7 Dec. 2007, Hokkaido Univ.
Core-Collapse SNe Core collapse Compact object n emission Energy deposition Massive Star (>10M8) e--capture SNe (8-10M8) H He C O Si Fe
CCSN Explosion Mechanism Black hole-forming SNe Rapidly-rotating star Jet Core collapse Accretion disk Accretion disk Neutrino Magnetic field Jet formation Jet-induced explosion 35M8 star (MacFadyen et al. 99)
Explosive Nucleosynthesis Post-shock Temperature T∝R-3/4E1/4 Shock Propagation T[109K] Fe Complete Si burning Fe,α,Ni,Zn,Co,V Incomplete Si burning Fe,Si,Cr,Mn O burning Si 5 4 R ejecta NS/BH 3
Supernova-induced star formation (e.g., Cioffi et al. 1988) The metal-poor stars are formed by the SN shock compression from the mixture of the materials ejected from SN (Fe, C, O, etc.) and swept-up by shockwave (H, He). H, He Fe, C, O, Mg, Si, Ca The abundance patterns of EMP stars reflect nucleosynthesis in the parent star and SN.
Jet-induced explosion Jet Mms=40M8, Z=0 Edep=1.5x1052erg Jet BH/NS BH cf. “Collapsar”(e.g., MacFadyen et al. 01) Magnetorotational Supernovae (e.g., Moiseenko et al. 06) . Edep[erg/s]: Energy deposition rate parameter (NT et al. 07)
Dependence: energy deposition rates . Edep↓: Infall↑ M(Fe)↓ [C/Fe]↑ . . Edep=120x1051erg/s Edep=1.5x1051erg/s H H He He Infall O/C O/C O/Mg Si Infall Fe
Results: M(Fe) & [C/X] . . Larger Edep Larger Edep Larger M(Fe) Smaller M(Fe) Explosive Jet HMP EMP stars CEMP stars UMP stars HMP stars UMP [C/Mg] CEMP [C/Fe] EMP Higher [C/Fe] for smaller M(Fe) (tending to be lower [Fe/H]) [C/O]
Abundance patterns . EMP stars Edep=30x1051erg/s M(56Ni)~0.1M8 . CEMP stars Edep=3x1051erg/s M(56Ni)~8x10-4M8 . HMP stars Edep=0.5-1.5x1051erg/s M(56Ni)~3-4x10-6M8
Summary-1 EMP stars SNe with various E and Mms (NT, Umeda, Nomoto 07) UMP HMP CEMP . EMP When Edep is large EMP, CEMP, (UMP), HMP stars Jet-induced SNe with various Edep .
A peculiar EMP stars: HE1424-0241 Si He Fe Mg [Mg/Si]~1.4 Si Jet Fe A possible explanation Angular dependent yield (NT 07 arXiv:0711.4815) Abundance mixing due to the ISM interaction?? R/1014 [cm] • A peculiar Si-deficient star (Cohen et al. 07)
Summary-1 EMP stars SNe with various E and Mms (NT, Umeda, Nomoto 07) UMP HMP CEMP . EMP When Edep is large EMP, CEMP, (UMP), HMP stars Jet-induced SNe with various Edep . Angular dependence??
Summary-2 • Abundance patterns of the EMP stars • Jet-induced explosion of stars as massive as SNe in the present days (Mms <100M8) • Variations of the EMP stars • Variation of energy deposition rate • Higher [C/Fe] tends to be realized for lower [Fe/H]. • Variation of progenitor mass and explosion energy • Angular dependence → Outliers of the EMP stars • According to the simulation of First Star formation (e.g., Yoshida et al. 06) • First stars are more massive than 100M8 • Second stars with 40M8 are formed from primordial gas?