400 likes | 449 Views
Reconnaissance study on the Water Quality of Miomotegawa for the evaluation of the impacts of acid pollution. EF Fellow : Hyung-Jae Yang , Ph.D. National Institute of Environmental Research , Republic of Korea Host Institute ; Dr. Kenichi Satake
E N D
Reconnaissance study on the Water Quality of Miomotegawa for the evaluation of the impacts of acid pollution • EF Fellow : Hyung-Jae Yang, Ph.D. National Institute of Environmental Research, Republic of Korea • Host Institute; Dr. Kenichi Satake National Institute for Environmental Studies (Research Period ; (Oct. 6, 2001~Mar. 31, 2002)
Contents • Introduction • Water Quality of Miomotegawa • T-N & T-P Standard in Japan • Sampling Sites • Analysis Parameters • Analysis Result • Discussion
Introduction • N.Europe&US; Acidification of freshwater wiped out populations of salmonid fishes from a great number of lakes & rivers. • E.Asia; Led to conti. increase in amount of acidic pollut. • Cause of pH decline; deposition of acidic substances into lakes in excess of buffer. Capacity. • Japan; pH4 Rain often precipitated, but acid. observed not yet, due to soil buffering capacity. • pH6, weak acidity, sufficient to depress prespawning behavior of salmonid fishes.
.Niigata Prefecture; Forest ecosystem, affected by - acid deposition, - long-range trans boundary air pollut. from China. - Many fresh rivers in Niigata will be surveyed in 2002.. Miomotegawa; - Important salmon river, - Most catchment of the river, surrounded by granite; has lower acid-neutralization capacity (Fig. 1).
Nutrients standard; T-N & T-P conc. To prevent eutrophication of lakes & reservoirs. Salmon & trout; common in oligotrophic lakes, Carp & roach; abundant in eutrophic lakes. T-N & T-P Standard • Fishery class 1( T-P 0.01mg/l, T-N 0.2mg/l) corresponds to water quality to maintain population of salmon & trout. • Based on; lake Chuzenjiko and Biwako in which trouts are being maintained
2. Sampling site • Table 1. Description of Sampling Stations ______________________________________________________ Station Location Remark ______________________________________________________ 1 Estuarine(Sea of Japan) Saline water 2 Downstream 500m from the sea 3 Streamlet @Otsuki mura 4 Tributary 5 Midstream 6 Miomotegawa dam 7 Takijinja fall 8 Sediment of Miomotegawa dam ______________________________________________________
3. Analysis parameters Table 2. Analyzing parameters ______________________________________________________ Parameters Analytical method Apparatus ______________________________________________________ pH pH meter LOT 7120679(Horiba) EC Conductivity meter ” Cl Ion chromatography Dionex500 NO3 ”” Na ”” K ”” Mg ”” Ca ”” NH4 ”” ______________________________________________________
4.Analysis Result of River Water Table 3. Results of water quality analysis _______________________________________________unit; mg/l___ St.# Na K Mg Ca NH4 Cl NO3 SO4 ______________________________________________________ 1 6470 260 772 250 0.00 10100 33.2 1450 2 8.61 1.06 1.84 4.47 0.04 14.5 2.99 5.31 316.0 1.22 3.42 4.22 0.00 29.5 5.70 5.70 46.68 0.72 2.13 3.48 0.00 11.89 2.89 4.23 54.83 0.89 1.09 3.91 0.01 6.64 1.37 4.08 64.25 0.76 1.04 4.17 0.01 5.70 1.05 3.73 719.8 1.13 3.03 2.79 0.00 34.4 3.86 6.64 ______________________________________________________
5. Discussion • In Japanese Non-acidified watersheds, acid deposition is neutralized by chemical weathering of primary minerals. • Expected, Miomotegawa water has;Lower acid-neutralization capacity &, cation conc.Nevertheless, pH 7 in avghas been kept w/o seasonal depression, since granite is widely distributed in river catchments area • It was in accord w/ result of water analysis, Ca & Mg conc. were much lower (atSt.5, midstream), than others rivers & lakes’.
Cation Conc. of Miomotegawa; - Ca & Mg were 3.91mg/l & 1.09mg/l, lowest - ½ to ¼ of other rivers & lakes’. - Con. of upstream is slightly lower than downstream’s Unit; mg/l Ca; Tonegawa13.3, Ishikarigawa 9.4, Shinanogawa 10.2, Nakagawa 15.8(greatest), Yuragawa 6.4, Kinogawa 12.9, Biwako lake 8.5, Kasumigaura lake 16.6, Mg; Kasumigaura 5.9(greatest), Nakagawa 4.3mg/l
Anion Conc. of Miomotegawa;(NH4, NO3, SO4) - 0.04, 2.99 and 5.31 at downstream - 0.01, 1.37 and 4.08 at upstream, • Con. of downstream is relatively greater than upperstream’s -> Some dry deposition of acidic pollutant, or some other minerals by soil weathering have flowed into the water body.
Table 4. Buffering Capacity Test Adding 1/100 Sulfuric acid(mol/L) __________________________________________________________ Sample pH (Raw) pH(0.005) pH(0.05) pH(0.5) ______________________________ ______________________________ ___________________________ DW 6.93 5.02 3.01 2.00 M1 8.16 7.58 5.81 2.13 M2 7.25 6.63 3.10 2.06 M3 7.45 6.66 3.13 2.06 M4 7.39 6.67 3.12 2.06 M5 7.25 6.42 3.10 2.05 M6 7.04 6.18 3.00 -- M7 7.08 5.95 3.08 2.05 A1 7.36 6.05 3.04 2.00 A2 7.54 6.65 3.06 2.01 A3 7.40 6.50 3.04 2.01 A4 7.41 6.56 3.07 2.00 ______________________________________________________
Saline water(St.1) has greater Buffering capacity against 1% of 0.1N Sulfuric acid. • Riverwater has Buffering capacity against 1% of 0.01N, but not 0.1N sulfuric acid. • St.2 –5 (Miomotegawa, Streamlet & Tributary), not much different curve. Their pH values of adding 1% 0.1N sulfuric acid are crowded on pH 3.
Saline water(St.1) has greater Buffering capacity against 1% of 0.1N, But not 1N sulfuric acid. • Distilled Water has straight line, but not @ adding >1% of 0.1N Sulfuric Acid. • All their pH values @ adding 1% of 1N sulfuric acid are crowded on pH 2 including Distilled Water & Saline Water.
풍화에 의한 중화작용과 인자 - 광물의 종류, 광물의 표면형상, 토양수질, 강수의 pH및 산성 물질강하량, 기온·강수량, 유역내의 수문조건 등 - 풍화에 의한 중화작용의 크기는 광물의 함유량에 비례 (1차광물) + (H+) → 2차광물 + (鹽基) F = a * M * D 여기서, F ; 유역내에의 광물 풍화속도 (mol/ha/y), a ; 광물의 종류에 의한 풍화계수 (ha/eq) M ; 유역전체의 풍화층에 함유된 광물량(mol/ha) D ; 유역에의 酸강하량(eq/ha/y) 이다
암석의 풍화에 의한 안정도 석영(Quartz) > 백운모(White Mica) > K장석(Feldspar) > Ca장석 > Na장석 = 흑운모 > 각섬석(Amphibole) > 방해석
앞으로의 연구과제 1. 유역의 산성물질 중화작용의 평가법 제안 ① 전유역 현지조사로 화학물질의 연간 물질수지 산정 대기로부터의 공급량; 육수량과 농도 유역유출량; 유량과 농도 ② 주요 광물의 동정, 풍화반응식 추정. 풍화로 H4SiO4방출; 지표로 풍화속도 산정 ③ 풍화속도 계산 후, 풍화반응식으로부터 종류별 이온 공급량 산정 ④풍화이외는 이온교환에 의한 것으로 가정; 유역내 총 공급량 - 풍화에 의한 공급량
2. 중화작용 평가법의 적용성 검토 화강섬록암; 토양·암반중의 광물 및 지하수하천수의 이온에서 斜長石, 黑雲母, 칼륨長石, 方解石 등 작용 광물수지, 광물풍화반응식에서 유역내의 중화기구; 斜長石(Na0.69Ca0.31Al1.31Si2.69O8)이 Kaolinite로 변화하는 풍화반응 Ca2+, Na+, H4SiO4공급 중화 3) H+는 이온교환보다 화학적 풍화에 의해 중화. 광물의 풍화는 장기간 계속 단기간내 산성화 는 발생하지는 않음 4) 년평균 pH; 강수 4.9, 토양수 5.1∼6.5, 하천수 7.2 산성물질은 유역내에서 중화 5) 지질조건이 다른, 산성화된 유역에 적용성 검토