230 likes | 241 Views
Explore enthalpy, entropy, and free energy concepts, their interrelation, and their application in solving chemical problems. Learn why reactions occur and how to calculate enthalpy changes. Study state functions, internal energy, standard states, Hess's Law, and Gibbs Free Energy Calculations.
E N D
Chapter 20 Energy and Disorder
Objectives • Understand the concepts of enthalpy, entropy, and free energy and the relationship among them • Use these concepts to solve problems dealing with any of them • Understand energy as it is related to chemical systems
Why Reactions Occur • Exothermic reactions generally take place spontaneously • Endothermic reactions generally do not take place spontaneously • Natural processes tend to go from an orderly state to a disorderly one • High energy low energy • Order disorder
Isothermal Processes – reactions taking place at constant temperature • Isobaric Processes – reactions taking place at a constant pressure • Thermodynamics – the study of the flow of energy
State Functions • A state function is one whose value depends only on the current state of the system • T = T2 – T1 • V = V2 – V1 • P = P2 – P1
Internal Energy • Every system has some internal energy • Internal energy, U, is a state function • Ways to transfer energy • By heating the system/surroundings • By doing work
U = q + w • q = heat gained by the system • w = the amount of work done on the system • Neither q nor w are state functions • q has a positive sign if heat is flowing in, negative if heat is flowing out • w is negative if work is done on the surroundings, and positive if done on the system
Assignment • 1-5 page 394 • Read through the rest of chapter 20 • Due: Tomorrow
Enthalpy • Enthalpy (H) = U + PV • Enthalpy is a state function • H = H2 – H1 • Exothermic Rxn: H < 0 • Endothermic Rxn: H > 0
Standard States • Standard state refers to the enthalpy substances have at 298.15 K and 100.000 kPa • Not the same as with the gas laws • In measuring enthalpy, set the enthalpy of any free elements to be equal to zero • A free element is one that is not in a compound
Enthalpy of Formation • Enthalpy of formation is the change in enthalpy when one mole of a compound is produced from free elements in their standard states • Units: KJ/mole • Symbol: Hfº • º means at standard state • Thermodynamic stability depends on the amount of energy that would be required to decompose the compound • See table A-6 in appendix for values • Thermodynamically stable compounds have large negative enthalpies of formation
Calculation of Enthalpy of Reaction • Hfº (products) = Hfº (reactants) + Hrº • means summation • Hrº means change in enthalpy • If the enthalpy of formation of each product is known, you can calculate the amount of energy produced or absorbed, which then tells you if the reaction will be endothermic or exothermic • Assignment: Due at end of class • 6-7 page 397
Hess’s Law • Hess’s Law – The enthalpy change for a reaction is the sum of the enthalpy changes for a series of reactions that add up to the overall reaction
Consider reaction A C • Break into two parts • (1)AB and (2)B C • Hr(1) = Hf°B - Hf°A • Hr(2) = Hf°C - Hf°B • So, the enthalpy change for the overall change of A to C is • H° = Hr(1)° + Hr(2)°
Entropy • Entropy, S, is derived from the second law of thermodynamics. This law places limits on the conversion of heat into work and prohibits perpetual motion • Entropy (S) is a measure of disorder in a system • Entropy is a state function
Entropy cont. • Examples of • - • - • - • S > 0 = Increase in disorder • S < 0 = Decrease in disorder • Assignment: Due at end of class • 8-10 pg 400 • 10 points
Gibbs Free Energy • Gibbs free energy determines whether a reaction will occur or not • G = H - T S • If G < 0 the reaction is exergonic (spontaneous) • If G > 0 the reaction is endergonic • The reaction can only occur is T S is very large • If G = 0 the system is at equilibrium
Gibbs Free Energy Calculations • Appendix A-6 • Gr° = Gf°(products) - Gf°(reactants) • Assignment • Problems 11-14 pg 403-404
Chapter Review • Complete questions