330 likes | 359 Views
This study investigates low energy nuclear collective modes and excitations in Neon isotopes, N=16 isotones, and 68Ni using the QRPA and Gogny force. The approach combines mean field and RPA methods to accurately describe multipolarities, parities, collective and individual states, and low/high energy states.
E N D
Low energy nuclear collective modes and excitations Low energy excitations in Neon isotopes, N=16 isotones and 68Ni within QRPA and Gogny force Sophie Péru Marco Martini
Beyond “mean field” … with RPA or QRPA RPA approaches describe all multipolarties and all parities, collective states and individual ones, low energy and high energy states with the same accuracy. A l’approximation de faible amplitude , i.e. pour des noyaux « harmoniques » E δ2E/δq2>0 δ2E/δq2 δE/δq=0 qμν
Formalism HFB+QRPA {b+b}quasi-particle (qp) creation and annihilation operators. In axial symmetry , QRPA states{q+} are obtained for each block K. (Kp≤Jp) They are solution of In our approach, The effective interactionD1Sis used both in the HFB mean field and in the QRPA matrix.
High energy collective states: giant resonances Giant resonances are related to nuclear matter properties Monopole Quadripole Dipole Octupole IS GMR spurious state GQR IV GMR IV GDR
RPA in spherical symmetry Giant resonances in exotic nuclei: 100Sn, 132Sn, 78Ni; S. Péru, J.F. Berger, and P.F. Bortignon, Eur. Phys. Jour. A 26, 25-32 (2005) Dipole Monopole Approach limited to Spherical nuclei with no pairing Such study have shown the role of the consistence between mean field and RPA matrix.
QRPA in axial symmetry : Potential Energy Surfaces
Formalism Restoration of rotational symmetry for deformed states For example: Jπ = 2+ In intrinsic frame Using time reversal symmetry, three independent calculations (Kπ = 0+, 1+, 2+) are needed.
D.H. Youngblood, Y.-W. Lui, and H.L. Clark, Phys.Rev.C 60 (1999)014304 Quadrupole D.H. Youngblood, Y.-W. Lui, and H.L.Clark, Phys. Rev. C, 65, (2002) 034302
dipole response for Neon isotopes Increasing neutron number • PDR and shift to low energies • Increasing of fragmentation 20Ne 22Ne 18Ne PDR proton 24Ne 26Ne 28Ne PDR PDR PDR
Evolution with A Néon isotopes N=16Isotones Ne Ne Ne Mg Si Ne
26Ne ρ δρ Pygmy w.f.(10.7 MeV) Proton: 2qp contrib. 15.97 MeV 2s1/2 1p1/2 X2=0.04 17.60 MeV 1d5/2 1p3/2 X2=0.02 17.48 MeV 1f7/2 1d5/2 X2=0.01 Neutron: 2qp contrib. 10.52 MeV 2p3/2 2s1/2 X2=0.67 13.68 MeV 1f7/2 1d5/2 X2=0.10 12.43 MeV 2p1/2 2s1/2 X2=0.09 10.82 MeV 2p3/2 1d3/2 X2=0.03 18.50 MeV 1d3/2 1p1/2 X2=0.01 [e fm^-3] [fm^-3]
28Mg ρ Pygmy w.f. (11.6 MeV) Proton: 2qp contrib. 16.22 MeV 2s1/2 1p1/2 X2=0.06 16.02 MeV 1f7/2 1d5/2 X2=0.02 Neutron: 2qp contrib. 11.68 MeV 2p3/2 2s1/2 X2=0.40 11.93 MeV 2p3/2 1d3/2 X2=0.33 14.18 MeV 1f7/2 1d5/2 X2=0.06 13.98 MeV 2p1/2 2s1/2 X2=0.06 14.21 MeV 2p1/2 1d5/2 X2=0.03 [e fm^-3] δρ [fm^-3]
30Si ρ Pygmy w.f. (12.2 MeV) Proton: 2qp contrib 15.92 MeV 2s1/2 1p1/2 X2=0.19 14.33 MeV 1f7/2 1d5/2 X2=0.07 17.15 MeV 2p3/2 1d5/2 X2=0.01 Neutron: 2qp contrib. 12.61 MeV 2p3/2 2s1/2 X2=0.44 14.55 MeV 1f7/2 1d5/2 X2=0.11 12.79 MeV 2p3/2 1d3/2 X2=0.07 15.23 MeV 2p1/2 2s1/2 X2=0.07 [e fm^-3] δρ [fm^-3]
18Ne Pygmy w.f.(14.2 MeV) Proton: 2qp contrib. 15.99 MeV 1f7/2 1d5/2 X2=0.26 15.98 MeV 2p3/2 1d5/2 X2=0.23 13.75 MeV 2s1/2 1p1/2 X2=0.12 18.19 MeV 2p3/2 2s1/2 X2=0.09 16.95 MeV 1d5/2 1p3/2 X2=0.09 19.14 MeV 2p1/2 2s1/2 X2=0.04 Neutron: 2qp contrib. 15.78 MeV 1d3/2 1p3/2 X2=0.04 14.18 MeV 2s1/2 1p1/2 X2=0.04 ρ δρ [e fm^-3] [fm^-3]
Correlations between PDR and symmetry energy Carbone et al. Phys. Rev. C (2010) Effective Lagrangians Skyrme Forces Similar study with Gogny: (absent in literature) M. Martini
Dipole Resonances in 68Ni Gogny Effective Lagrangian Comparison among models and forces Skyrme M. Martini
Dipole response for Zr isotopes : 80Zr 84Zr 82Zr B(E1) B(M1) 86Zr 88Zr 90Zr 92Zr 94Zr 96Zr M1 γ strength for 92Zr, H. Utsunomiya et al, PRL 100, 162502 (2008) S.Goriely, H. Goutte, S. Hilaire, M. Martini, S. Péru, …
Beyond mean field … with GCM (GCM+GOA 2 vibr. + 3 rot.) = 5 Dimension Collective Hamiltonian 5DCH
HFB+QRPA / HFB+5DCH with the same interaction: A. Obertelli, et al, Phys. Rev. C 71, 024304 (2005) N=16 isotones S. Péru,AIPS Conference proceedings No. 1165,NSD09, (Melville, New York, 2009), p165
QRPA/5DCH Sn isotopes
Ni isotopes S. Péru,AIPS Conference proceedings No. 1165,NSD09, (Melville, New York, 2009), p165
Spectroscopy in neutron rich Ni isotopes within QRPA L. Gaudefroy, S. Péru …
0+ states in 68Ni within QRPA M. Martini & S. Péru
0+ states in 68Ni within QRPA Protons Neutrons Transition densities Protons Neutrons Protons Neutrons M. Martini, S. Péru …
Test of QRPA and 5DCH (GCM) wave functions in proton inelastic scattering… … beyond the nuclear structure : 36S HFB+5DCH E (2+1) = 2.34 MeV B(E2) = 375 e2fm4 HFB+QRPA E (2+1) = 3.29 MeV B(E2) = 139.7 e2fm4 Exp E (2+1) = 3.29 MeV B(E2) = 100 e2fm4 E. Bauge and S. Péru
Comparison between experimental data (circles) and one-step contributions (full curves) to the double- differential cross sections for 14.1 MeV neutron on 238 U (a,c). M. Dupuis ,E. Bauge,L. Bonneau,J.-P. Delaroche ,T. Kawano ,S. Karataglidis and S. Péru, Proceedings of the Second International Workshop on Nuclear Compound Reactions and Related Topics, (2010).