190 likes | 197 Views
Learn about transforming scores, changing data scales, converting units, and interpreting percentiles for data analysis. Understand Z-scores and how they provide insights into the distribution of data.
E N D
Transforming Scores • Changing the scale of the data in some way. • Change each score.
converting cm. to inches • comparing values on different scales (e.g., height and weight) • percentiles
Percentiles: converting data into the % of people at or below a particular level.
Example: Class A: score of 80 Class B: score of 55
Class A 98 1 96 2 88 2 85 3 82 2 80 2 76 3 72 3 70 2
Class B: 60 1 55 2 54 2 51 4 48 3 40 5 37 3
Class A cf 98 1 96 2 88 2 85 3 82 2 80 2 76 3 72 3 5 70 2 2
Class A cf 98 1 96 2 88 2 85 3 82 2 80 2 10 76 3 8 72 3 5 70 2 2
Class A cf 98 1 20 96 2 19 88 2 17 85 3 15 82 2 12 80 2 10 76 3 8 72 3 5 70 2 2
Class B: cf 60 1 55 2 54 2 51 4 48 3 40 5 8 37 3 3
Class B: cf 60 1 55 2 19 54 2 17 51 4 15 48 3 11 40 5 8 37 3 3
Class B: cf 60 1 20 55 2 19 54 2 17 51 4 15 48 3 11 40 5 8 37 3 3
Z score: transforms raw data into distance from the mean in units of standard deviation
Your score was 80 in a class with a mean of 79 and a standard deviation of 4.