520 likes | 816 Views
CIAE 在束谱学研究进展与展望. 吴晓光 中国原子能科学研究院. 课题组成员 吴晓光、 李广生、 贺创业、郑云 、 姚顺和、李聪博 、胡世鹏、 李红伟、汪金龙 、刘嘉健 、吴义恒. Contents. CIAE 在束伽玛谱学实验终端简介 成果与进展( 2010-2012 ) (1) 研究成果与进展 (2)新技术与新装置 新一代伽玛探测阵列研制及其研究前景 合作与展望. HI-13 串列加速器 及在束 γ 谱学实验终端. 设计最高端压: 13+ 2MV 运行最高端压 : ~ 13.5MV 加速离子 : p-U, 惰性气体除外. 在束 谱学终端.
E N D
CIAE在束谱学研究进展与展望 吴晓光 中国原子能科学研究院 课题组成员 吴晓光、李广生、贺创业、郑云、姚顺和、李聪博、胡世鹏、李红伟、汪金龙、刘嘉健、吴义恒
Contents • CIAE在束伽玛谱学实验终端简介 • 成果与进展(2010-2012) (1)研究成果与进展 (2)新技术与新装置 • 新一代伽玛探测阵列研制及其研究前景 • 合作与展望
HI-13串列加速器及在束γ谱学实验终端 设计最高端压:13+2MV 运行最高端压: ~13.5MV 加速离子: p-U,惰性气体除外 在束谱学终端
数据获取系统 操作界面 获取的能谱与时间谱
中国原子能科学研究院 • 中科院近物所 • 吉林大学 • 清华大学 • 北京大学 • 山东大学(威海) • 北京航空航天大学 • 深圳大学 • 东北师范大学 • 在束实验终端-合作单位
研究成果与进展 • 原子核磁转动带研究 • 原子核手征转动带研究 • 原子核X(5)对称性及形状相变研究 • Os同位素形状演化异常的研究 • 126I, 106Pd,73,74As,86,87Sr等核高自旋态研究 • 核区:A~80 、 100、130、170
1,原子核磁转动带研究 152Dy E2 199Pb M1 转动模式:近球形核 角动量来源于核芯外处于粒子或空穴轨道的少数价核子(质子、中子),这些价核子轨道成一定夹角。最低能量态对应于900夹角,角动量增加,夹角减小 谱特点: 很强的M1跃迁,B(M1)随J减小; 较弱的E2跃迁即小的B(E2); 10
112In磁转动带 5 6 4 3 2 1 7 8 9 10 12+态 B(M1)/B(E2) ~262 µN2/e2b2 ★ ★ ★ ★ ★ 110Pd(7Li,5n)112In @HI-13串列加速器 发现100余条新g射线,10个能带。 Nucl. Phys. A, 834 (2010) Phys.Rev.C83,024309(2011) 11 112In能级纲图
114In磁转动带 110Pd(7Li,3n)114In@HI-13串列加速器 • 本工作首次建立114In • 的高自旋态的能级纲图 • 发现了38个新的能级和约60条新的伽玛跃迁 • 建立6个新的带结构 • 并且首次发现磁转动带 C.B. Li, Y Zheng, X.G Wu et al., Eur. Phys. J. A 47, 141(2011). 本工作建议的能级纲图
106Ag磁转动带 11B+100Mo @ HI-13 Tandem Phys.Rev.C81,057301(2010) 1) 大的B(M1)/B(E2)比值 Band 1 Band 4 Band 2 Band 3 106Ag 2)动力学转动惯量J(2)~20 ħMeV-1, 小于超形变带及正常形变带 13
3 电转动与磁转动交叉! E∝I(I+1) 106Ag 112In • 106Ag、112In电转动与 磁转动共存? B(M1)/B(E2) ~262 µN2/e2b2
宏观世界:左右手,海螺壳 手性药物: 2001年诺贝尔奖 分子生物学:氨基酸、DNA分子 粒子物理 :中微子 2,手征转动带研究 手征对称性在自然界中普遍存在
原子核手征转动带研究 Titled rotation of triaxial nuclei S.Frauendorf and Jie Meng(1997) 三轴形变核可能存在手征转动带结构,并且指出在134Pr中的双重带可能是手征带的实验证据。 三个相互垂直的角动量: 质子(粒子)j沿短轴 中子(空穴) j沿长轴 核心的集体角动量R沿中间轴 三轴核心角动量与质子中子角动量的不同耦合出现左右手对称性
实验上观测到的手征双重带结构 A~100 (g9/2)-1h11/2 A~130 h11/2(h11/2)-1 107Ag A ~190 h9/2(i13/2)-1196Tl
106Ag手征性检验 实验:11B+100Mo @ HI-13 Tandem 检验106Ag的手征双重带是否 有相似的B(M1),B(E2)值? (DSAM) B(M1)、B(E2) 手征特性? 106Ag手征带的B(M1)和 B(E2)实验值 结论:106Ag伙伴带(band 2和 band 3) 不具备相似的B(M1)、 B(E2)跃迁几率, B(M1)摇摆(staggering)几乎观测不到,与理想手征双重带电磁跃迁应该表现出的特征不符, 验证了<Phys. Rev. Lett 98, 102501(2007)>里对106Ag手征性的讨论,
新技术和新装置 • 深垒下熔合的反应截面的测量(实验技术:利用X-符合测量的方法可以将测量精度延展到nb的量级) • 原子核低激发态寿命的精确测量 (实验技术:利用LaBr3探测器和延迟符合技术测量1ns左右原子核低激发态能级寿命) • Plunger装置测试与检验 (实验技术:利用反冲距离法(RDM)通过多普勒效应分析测量皮秒级原子核激发态寿命) • 内转换系数测量(实验技术:利用Si(Li)探测器和微桔谱仪测量内转换电子)
深垒下熔合反应截面的测量 Nucl.Instrum.Methods.Phys.Res.,Sect.A 598,445 (2009) VB PRL 103, 232702 (2009)
plunger装置的研制 Plunger简介:研制一台用于原子核高自旋态寿命 和g-因子测量的实验装置 1,该装置的基本结构:包括精密移动平台、靶膜展平装置、靶膜和阻停片之间平行度调节装置、靶膜和阻停片之间高精度微小距离移动系统、距离测量及自动反馈系统,还有远程控制系统以及相应的真空靶室。 2,技术要求:通过精密移动装置调节靶膜-阻停片之间的距离,其距离测量的精度应在0.1um以内,其可移动的距离范围在1μm~10mm之间,并且重复定位精度也要达到0.1um。 3,应用前景:装置建成后将使我们测量能级寿命的时间范围得到扩展,从而可以获得更丰富的核结构信息,并且有助于短寿命态的g-因子测量,为高自旋态研究开创一片新天地。还可使其能够应用到当前我国新建设的大科学装置上做一些很有创新性的实验工作,开展一些诸如丰中子核结构研究等国际上前沿课题的研究。
应用于放射性核束实验的新一代伽玛探测阵列的研制应用于放射性核束实验的新一代伽玛探测阵列的研制 • 研制背景 • 国内外研究现状 • LaBr3(Ce)探测器的在束γ谱学实验成果简介 • 新一代伽玛探测阵列设想及其应用前景
研制背景(大科学装置上的在束谱学研究) • 放射性核束物理是近20 年发展起来的核物理新领域,它研究的对象是在新型大科学装置上已经或即将产生的数千个非稳定(unstable)的核素。放射性核物理研究是对广阔的核科学未知领域的探索,正在极大地改变人们对原子核的传统认识。 • 我国在中科院近代物理所新近建成的冷却储存环大科学装置(CSR)以及在中国原子能科学研究院正在建设的北京放射性束装置(BRIF),提供了未来继续大力开展放射性核束物理研究的国内基础。 • 利用先进放射性核束装置,产生远离稳定线的目标核,并对其进行在束谱学测量将能开展许多非常有意义的研究工作。由于放射性核束本身强度较弱,且感兴趣核素的生成截面较小,在这种情况下我们需要高效率且分辨好的探测阵列来探测目标核所发射的γ射线,基于此我们提出研制新一代γ探测器阵列的建议。
国内放射性束装置 BeijingBRIF, BRIF II , Low E HI, RIB Lanzhou, CSRMed E HI, RIB, 2008
国外在束谱学探测装置现状与发展 现有装置: 日本:DALI2 欧洲:GASP,EUROBALL 美国:GAMMASPHERE 未来新发展: 欧洲:AGATA 美国:GRETA 日本:SHOGUN
EUROBALL EUROBALL
LaBr3(Ce)性能指标 LaBr3(Ce)闪烁体与分割式的高纯锗分辨比较。 • LaBr3(Ce)闪烁晶体具有光产额高、能量分辨率好、衰减时间短、非线性响应小等优点,可广泛应用于核物理研究,以及国际防恐反恐、核材料控制、安全检查、能源、核医学、工业计量、石油测井等多个领域。 主要性能指标 • 能量分辨率:相对于662keV γ射线的分辨率可以达到3% • 时间分辨率:能达到0.3ns • 探测效率:1MeV能达到30% 由LaBr3(Ce)探测器组成的探测阵列SHOGUN与由NaI(Tl)探测器组成的探测阵列性能比较
g array detectors—15 HPGe+7 LaBr3(Ce) 应用LaBr3(Ce)探测器进行的在束γ谱学实验工作简介 HPGe detector LaBr3(Ce)
152Eu Source Test Energy spectra of 133Ba and 152Eu
Off-line Test with 152Eu Deconvolution Fitting 1.39(3)ns T1/2=1.42(2)ns
In-Beam Experiment Partial level scheme of 174Os J. Gascon et al., Nuclear Physics 470 (1987) 230
X(5) criteria & candidates 174Os For X(5) nucleus: R4/2=2.910.10 Ref: R.F Casten, 1987 PRL 41
In-beam Experiments 508(16)ps Partial level scheme of 174Os
新一代g探测阵列的应用前景 • 其他应用: • 核技术 • 核数据测量 • 高能物理 • 天体物理 • 核医学 • ...... • 核物理基础研究: • 远离稳定线的核结构研究(新的幻数?) • N=Z, 滴线核 • 原子核的奇异形变 • 丰中子、丰质子核衰变 • 双质子发射 • ……
基于未来的新一代联合探测装置愿景 联合探测装置示意图 在青岛会议中,基于未来我国核结构研究的发展,我们提出了建设在束谱学联合探测装置的设想,希望通过我们国内合作单位的共同努力,提升我们的探测能力和研究水平,取得崭新丰富的研究成果。
在束谱学联合探测装置设想 中子墙 LaBr3(Ce)探测阵列 焦平面探测器 衰变测量 1/4伽玛球 反冲质谱仪 高纯锗探测器阵列 4Si球
主探测器阵列+辅助探测技术 主探测器阵列: g阵列—+分割 Clover探测器 +常规型高纯锗探测器 + LaBr3(Ce)探测阵列 +1/4伽玛球 4Si球 中子墙 反冲质谱仪 辅助探测技术: 1) 内转换电子测量(微桔谱仪) 2) 裂变碎片探测器 3) Plunger装置:寿命测量 4) 高能g探测器:GDR… 5)衰变测量: Moving tape 6)多重过滤(inner ball)
The AGATA Collaboration Bulgaria: Univ. Sofia Denmark: NBI Copenhagen Finland: Univ. Jyvaskyla France: GANIL Caen, IPN Lyon, CSNSM Orsay, IPN Orsay, CEA-DSM-DAPNIA Saclay, IreS Strasbourg Germany: HMI Berlin, Univ. Bonn, GSI Darmstadt, TU Darmstadt, FZ Jülich, Univ. zu Köln, LMU München, TU München Italy: INFN and Univ. Firenze, INFN and Univ. Genova, INFN Legnaro, INFN and Univ. Napoli, INFN and Univ. Padova, INFN and Univ. Milano, INFN Perugia and Univ. Camerino Poland: NINP and IFJ Krakow, SINS Swierk, HIL & IEP Warsaw Romania: NIPNE & PU Bucharest Sweden: Chalmers Univ. of Technology Göteborg, Lund Univ., Royal Institute of Technology Stockholm, Uppsala Univ. UK: Univ. Brighton, CLRC Daresbury, Univ. Keele, Univ. Liverpool, Univ. Manchester, Univ. Paisley, Univ. Surrey, Univ. York Turkey Hungary