1 / 27

Final Words

Final Words. Jian-hua Yeh ( 葉建華 ) 真理大學資訊科學系助理教授 au4290@email.au.edu.tw. Outline. What have we learned so far? What could a digital library really do? More selected extensions Final words. What have we learned so far?. Digital content industry overview Digital library case studies

luella
Download Presentation

Final Words

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Final Words Jian-hua Yeh (葉建華) 真理大學資訊科學系助理教授 au4290@email.au.edu.tw

  2. Outline • What have we learned so far? • What could a digital library really do? • More selected extensions • Final words

  3. What have we learned so far? • Digital content industry overview • Digital library case studies • Digital repository system • Digital library related technologies • Knowledge management issues

  4. Digital Content Industry Overview • Government project: e-Taiwan • NSC-DMP • NSC-NDAP • CCA-NRCH

  5. NSC Projects • NSC Digital Museum Project (DMP) • 1998 – 2002 • Pilot projects & digital museum projects • NSC National Digital Archives Program (NDAP) • 2002 -- 2006

  6. NSC DMP 技術支援計畫 • 人文與自然資源地圖 • 搜文解字─語文知識網路 • 資源組織與檢索之規範 • 系統評估 • 數位典藏系統先導計畫 • 數位博物館影像版權資訊植入技術與軟體之開發 主題計畫 • 語文藝術類﹕ 4 件 • 人文社會類﹕ 12 件 • 自然生態類﹕ 5 件 • 生活醫療類: 4件 • 建築與地理類﹕3 件

  7. NSC NDAP • Combination of three major NSC projects • Digital museum project • Digital archive project • International digital library project with NSF (US) • As a basis of e-Taiwan project

  8. NSC NDAP (cont.)

  9. CCA NRCH 創造文化產業經濟 • 數位文化加值計畫 • 故宮文物數位博物館建置 • 與加值應用計畫 提昇政府文化服務 及國際行銷 加強文化藝術資源數位化 與應用 • 文化藝術活動資訊網路 • 國家文化資料庫建置計畫 • 國家文化藝術人才庫建置計畫 • 文化藝術主題知識庫 • 文化藝術數位資源應用與呈現計畫 強化文化機構基礎建設 • 文化藝術機構基礎建設

  10. Digital Archive Applications 原有典藏 數位化檔案群 民眾 政府各部會 文化產業 加值產業 內容產業 軟體產業 所有資訊相關之產業 教育與學習 研究與發展 資訊共享、公共資訊系統 創造力、生產力、競爭力 以及生活品質的提升

  11. Digital Library Case Studies • NTU digital library/museum project • Content generation: centralized • Information management: centralized • Information access: centralized • NSC NDAP project • Content generation: distributed • Information management: distributed • Information access: distributed • CCA NRCH project • Content generation: distributed • Information management: centralized & distributed • Information access: centralized

  12. Usage Model • Centralized information access • Centralized information-lookup only • Catalog (meta-information) centralized • NDAP union catalog project: OAI-based • Centralized information-lookup & content access • Catalog & content centralized • NRCH digital archive project • Distributed information access • Distributed information lookup • OpenURL, Z39.50 • Distributed content access • DOI

  13. Related Technologies • XML/DTD • Metadata description • Multimedia processing • You are already familiar with this from your term project!

  14. Knowledge Management Issue • Turning data into information • Resource organization • convert digital content into useful information • Meta-information • Turning information into knowledge • Information organization • Semantics generation: ontology creation • Meta-meta-information • Classification problem

  15. DATA Information Knowledge decide ID=34 Vehicle Located at Vise maneuver ACC ID=08 Tank NULL obscured PARRT Semi-mountainous terrain ¥ Run84 Noise Human Meaning ¥ Å @ ü Q # ¥ e & 5 ~ Æ � The Problem • With the increasing complexity of our systems and our IT needs, we need to go to human level interaction • We need to maximize the amount of Semantics we can utilize • From data and information level, we need to go to human semanticlevel interaction • And represented semantics means multiple represented semantics, requiring semantic integration

  16. ... Interpretation Continuum Richer Metadata: RDF/S Simple Metadata: XML Very Rich Metadata: DAML+OIL Computer interpreted Human interpreted Interpretation Continuum KNOWLEDGE DATA • Very structured • Logical • Relatively unstructured • Random • Info retrieval • Web search • Text summarization • Content extraction • Topic maps • Reasoning services • Ontology Induction Automatically acquire concepts; evolve ontologies into domain theories; link to institution repositories (e.g., MII) Automatically span domain theories and institution repositories; inter-operate with fully interpreting computer Store and connect patterns via conceptual model (i.e,. an ontology); link to docs to aid retrieval Find and correlate patterns in raw docs; display matches only Display raw documents; All interpretation done by humans Moving to the right depends on increasing automated semantic interpretation

  17. Complexity of Ontology

  18. OWL: Web Ontology Language

  19. XTM: Topic Maps Language

  20. Semantic Analysis

  21. Categorization & Visualization

  22. Key Persons • Information level • Content experts • Computer technologists • Library/Information experts • Knowledge level • Content experts • Computer technologists • Cognitive scientists

  23. What could a digital library really do? • Preservation • Education • Research • Development • Application • Innovation

  24. Selected Digital Library Extensions • Presentation • RIA: rich internet application • Flash-based presentation • AJAX-based presentation • AFlax: combining Flash and AJAX technologies • Visualization • Service • Web service application • UDDI • Knowledge service • Standard transformation: XTM, OWL, SKOS, etc. • Extension • Education: SCORM • Archive/library content to learning content

  25. AJAX

  26. Conclusion

More Related