410 likes | 549 Views
Natural Language Understanding. Natural Language Generation. Speech Recognition. Speech Synthesis. Language Technology. Meaning. Text. Text. Speech. Speech. Natural Language Understanding. Speech Recognition. Language Technology. Meaning. Natural Language Generation. Text. Text.
E N D
Natural Language Understanding Natural Language Generation Speech Recognition Speech Synthesis Language Technology Meaning Text Text Speech Speech
Natural Language Understanding Speech Recognition Language Technology Meaning Natural Language Generation Text Text Speech Synthesis Speech Speech
What is NLG? Natural language generation is the process of deliberately constructing a natural language text in order to meet specified communicative goals. [McDonald 1992]
Example System: FoG • Function: • Produces textual weather reports in English and French • Input: • Graphical/numerical weather depiction • User: • Environment Canada (Canadian Weather Service) • Developer: • CoGenTex • Status: • Fielded, in operational use since 1992
Example System: TEMSIS • Function: • Summarises pollutant information for environmental officials • Input: • Environmental data + a specific query • User: • Regional environmental agencies in France and Germany • Developer: • DFKI GmbH • Status: • Prototype developed; requirements for fielded system being analysed
TEMSIS: Output Summary • Le 21/7/1998 à la station de mesure de Völklingen -City, la valeur moyenne maximale d'une demi-heure (Halbstundenmittelwert) pour l'ozone atteignait 104.0 µg/m³. Par conséquent, selon le decret MIK (MIK-Verordnung), la valeur limite autorisée de 120 µg/m³ n'a pas été dépassée. • Der höchste Halbstundenmittelwert für Ozon an der Meßstation Völklingen -City erreichte am 21. 7. 1998 104.0 µg/m³, womit der gesetzlich zulässige Grenzwert nach MIK-Verordnung von 120 µg/m³ nicht überschritten wurde.
A further system • ILEX • generation of virtual museum information online • http://www.hcrc.ed.ac.uk/ilex/demos/museum.cgi • SUMTIME • generation of weather reports • http://www.csd.abdn.ac.uk/~ssripada/cgi_bin/StartSMT.html
TEMSIS: Input Query ((LANGUAGE FRENCH)(GRENZWERTLAND GERMANY)(BESTAETIGE-MS T) (BESTAETIGE-SS T) (MESSSTATION \"Voelklingen City\") (DB-ID \"#2083\") (SCHADSTOFF \"#19\") (ART MAXIMUM) (ZEIT ((JAHR 1998) (MONAT 7) (TAG 21))))
Basic Generation Problem • How to go from an abstract semantic input to a concrete linguistic form that is • semantically correct • stylistically appropriate • textually appropriate ???
Document Planning Document Plan Standard Pipelined Architecture Microplanning Text Specification Surface Realisation
Semantic specification TACTICAL GENERATOR KPML semantics lexicogrammar sentence
Semantic specification TACTICAL GENERATOR KPML is a Process generation engine Resources KPML semantics lexicogrammar sentence
Semantic specification TACTICAL GENERATION semantics lexicogrammar sentence
What is NLG? Natural language generation is the process of deliberately constructing a natural language text in order to meet specified communicative goals. NLG is a process of choice under specified constraints [McDonald]
Linguistic Description with system networks imperative interrogative Finite^Subject indicative +Finite AXES declarative syntagmatic Subject^Finite paradigmatic
imperative interrogative indicative declarative Resource Architecture in KPML: system networks lexicogrammar
Resource Architecture in KPML: system networks grammatical systems imperative interrogative indicative declarative
Resource Architecture in KPML: system networks grammatical features imperative interrogative indicative declarative
Resource Architecture in KPML: system networks imperative interrogative Finite^Subject indicative +Finite declarative Subject^Finite
Resource Architecture in KPML: system networks realization statements imperative interrogative Finite^Subject indicative +Finite declarative Subject^Finite
Generation Process: system networks imperative interrogative Finite^Subject indicative +Finite declarative Subject^Finite
Generation Process: system networks imperative interrogative Finite^Subject indicative +Finite declarative Subject^Finite
Generation Process: traversal imperative interrogative Finite^Subject indicative +Finite declarative Subject^Finite
Generation Process: traversal imperative interrogative Finite^Subject indicative +Finite declarative Subject^Finite
Generation Process: traversal imperative interrogative Finite^Subject indicative +Finite declarative Subject^Finite
Generation Process: traversal imperative interrogative Finite^Subject indicative +Finite declarative Subject^Finite
Generation Process: traversal imperative interrogative Finite^Subject indicative +Finite declarative Subject^Finite
Generation Process: traversal imperative interrogative Finite^Subject indicative +Finite declarative Subject^Finite
Generation Process: traversal interrogative Finite^Subject indicative +Finite
Generation Process: structure interrogative Finite^Subject +Finite
Generation Process: structure interrogative Finite^Subject +Finite
[clause] Linear Precedence Finite Subject you going? Are Immediate Dominance Generation Process: realization statements Finite^Subject +Finite [interrogative]
Types of Realization Statements • Ordering (immediate, relative) • Structure building • Lexicalization
USER Functionally Motivated Grammatical Choices
USER Functionally Motivated Grammatical Choices user = language engineer: developing and debugging the “grammatical competence” of a language resource
USER Functionally Motivated Grammatical Choices Semantic Specifications
USER Functionally Motivated Grammatical Choices Semantic Specifications user = system builder: developing and debugging a system that expects natural language generation functionality