300 likes | 425 Views
M ain I njector P article P roduction Experiment DOE Annual Program Review Holger Meyer. MIPP Experiment Overview. Approved in November 2001, installed in Meson Center MC7, 14 months physics run ended in Februrary 2006
E N D
Main Injector Particle Production Experiment DOE Annual Program Review Holger Meyer
MIPP Experiment Overview • Approved in November 2001, installed in Meson Center MC7,14 months physics run ended in Februrary 2006 • Use 120 GeV/c Main Injector protons to produce– secondary beams of p, K, and p from 5 GeV/c to 90 GeV/c– 120 GeV/c proton beam • Measure particle production cross sections on fixed targets– various nuclei including hydrogen and the NuMI target • Momenta of ~all charged particles measured with TPC and tracking chambers.Particle identification with dE/dx, ToF, differential Cherenkov, and RICH technologies. • Open Geometry – Lower systematics & Higher statistics than existing data. • A proposal P960 to upgrade MIPP is under consideration MIPP - Holger Meyer
MIPP Collaboration J. Klay - California Polytechnic State University, R. J. Peterson - University of Colorado, Boulder W. Baker, D. Carey, J. Hylen, C. Johnstone, M. Kostin, H. Meyer, N. Mokhov, A. Para, R. Raja, N. Solomey, S. Striganov - Fermi National Accelerator Laboratory G. Feldman, A. Lebedev, S. Seun - Harvard University P. Hanlet, O. Kamaev, D. Kaplan, H. Rubin, Y. Torun - Illinois Institute of Technology U. Akgun, G. Aydin, F. Duru, E. Gülmez, Y. Gunaydin, Y. Onel, A. Penzo - University of Iowa N. Graf, M. Messier, J. Paley - Indiana University P. D. Barnes Jr., E. Hartouni, M. Heffner, D. Lange, R. Soltz, D. Wright - Lawrence Livermore Laboratory R. L. Abrams, H. R. Gustafson, M. Longo, T. Nigmanov, H-K. Park, D. Rajaram - University of Michigan A. Bujak, L. Gutay, D. E. Miller - Purdue University T. Bergfeld, A. Godley, S. R. Mishra, C. Rosenfeld, K. Wu - University of South Carolina C. Dukes, L. C. Lu, C. Materniack, K. Nelson, A. Norman - University of Virginia N. Solomey – Wichita State University MIPP - Holger Meyer
MIPP Secondary Beam • Installed in 2003. Delivered slow spill commissioning beam since February 2004. Finished Engineering run in Aug 2004. MIPP - Holger Meyer
MIPP Detector - Tracking JGG TPC MIPP - Holger Meyer
MIPP Detector – Particle ID ToF b [cm/ns] vs p [GeV/c] RICH ring radiiand vessel Segmented threshold Ckov MIPP - Holger Meyer
MIPP Time Projection Chamber TPC originates at BEVALAC group at LBL, then BNL-E910 - currently limiting DAQ to≤60Hz (1990's electronics)- drift time is 16 ms All tracks are reconstructed- even in bad events MIPP - Holger Meyer
MIPP TPC Distortion Corrections • Correct for non-parallel E and B fields • use Magboltz to model electron drift in P10 gas • Parametrize in drift velocity v=(vx,vy,vz), E=(0,Ey,0), B=(Bx,By,0) • Swim electrons up from the pad-plane • Distortions ofseveral cm inJGG • Residuals offew mm MIPP - Holger Meyer
MIPP Monte Carlo simulates Data well Data (left) and MC (below) agree well.MC models regions of low gain in the TPC. MIPP - Holger Meyer
MIPP Expected Particle ID MIPP - Holger Meyer
MIPP Physics • Particle Physics – To acquire unbiased high statistics data with complete particle id coverage for hadron interactions. • Study non-perturbative QCD hadron dynamics, scaling laws of particle production • Investigate light meson spectroscopy, missing resonances • Charged Kaon mass measurement • Nuclear Physics • Investigate strangeness production in nuclei • Nuclear scaling • Propagation of flavor through nuclei • Service Measurements • Improve shower models in MARS, Geant4 and Calorimetry -- ILC • Proton Radiography – Stockpile Stewardship- National Security • MINOS target – pion production measurements to control the near/far systematics • Will make DSTs available for the public on DVDs after we are done. • HARP at CERN went from 2-15GeV incoming pion and proton beams. MIPP has data at 5-85 GeV/c for 6 beam species K p MIPP - Holger Meyer
MIPP Data Set MIPP - Holger Meyer
MIPP Data Reconstruction • Tracking and Vertex reconstruction ☑ • PID • TPC ☑ • Ckov ☑ • ToF ☒ (close to final) • RICH ☑ • Monte Carlo ☑ MIPP - Holger Meyer
MIPP Results • Two PhD theses finished • Ratio of Pion Kaon Production in Proton Carbon Interactions (Andre Lebedev) • Measurement of Pi-K Ratios from the NuMI Target(S. Seun) • 120 GeV/cproton beam • Several otherpreliminaryresults • Multiplicities • Cross Sections MIPP - Holger Meyer
MIPP 120 GeV/c p-C ratios • MIPP data for ratios of π and K produced by p on thin-Carbon – A. Lebedev • MIPP data is needed to constrain models/fits MIPP - Holger Meyer
Preliminary Cross Sections • Reasonable first results – G. Aydin & H. Meyer • needs work on normalization, some other improvements MIPP - Holger Meyer
MIPP Upgrade (P960) Collaboration • D. Isenhower, M. Sadler, R. Towell, S. Watson; Abilene Christian University • R. J. Peterson; University of Colorado, Boulder • W. Baker, B. Baldin,D. Carey, D. Christian, M. Demarteau, D. Jensen, C. Johnstone, H. Meyer, R. Raja, A. Ronzhin, N. Solomey, W. Wester, J.-Y. Wu; Fermi National Accelerator Laboratory • W. Briscoe, I. Strakovsky, R. Workman; George Washington University, Washington D.C • H. Gutbrod, B. Kolb, K. Peters; GSI, Darmstadt, Germany • G. Feldman; Harvard University • Y. Torun; Illinois Institute of Technology • M.D. Messier, J. Paley; Indiana University • U. Akgun, G. Aydin, F. Duru, E. Gülmez, Y. Gunaydin, Y. Onel, A. Penzo; University of Iowa • V. Avdeichikov, P. Filip, R. Leitner, J. Manjavidze, V. Nikitin, I. Rufanov, A. Sissakian, T. Topuria, A. Zinchenko; Joint Institute of Nuclear Research, Dubna, Russia • D. M. Manley; Kent State University • H. Löhner, J. Messchendorp; KVI, Groningen, Netherlands • H. R. Gustafson, M. Longo, T. Nigmanov, D. Rajaram; University of Michigan • S. P. Kruglov, I. V. Lopatin, N. G. Kozlenko, A. A. Kulbardis, D. V. Nowinsky, A. K. Radkov, V. V. Sumachev; Petersburg Nuclear Physics Institute, Gatchina, Russia • A. Bujak, L. Gutay; Purdue University • D. Bergman, G. Thomson; Rutgers University, New Jersey • A. Godley, S. R. Mishra, C. Rosenfeld; University of South Carolina • C. Dukes, C. Materniak, K. Nelson, A. Norman; University of Virginia • P. Desiati, F. Halzen, T. Montaruli; University of Wisconsin, Madison • P. Sokolsky, W. Springer; University of Utah MIPP - Holger Meyer
MIPP Upgrade Status • New JGG magnet coils manufactured ($200k) • Refurbish Ziptrack to map the new magnetic field • TPC electronics in hand • Altro & Pasa chips ($80k) • Same as LHC, STAR,… • Will read out at ~3kHz • Other electronics upgrades • Prototypes in fabrication • Plastic Ball from KVI/GSI asrecoil detector in MIPP MIPP - Holger Meyer
MIPP Upgrade Physics • Measurement of Neutrino production targets • MINOS, NOvA, MINERvA • Atmospheric Neutrino production, Cosmic Ray showers • Cross sections on Nitrogen • Hadronic Shower Simulation • Tagged neutral beams • ILC Detector R&D • Non-perturbative QCD • Baryon Spectroscopy • See "Proposal to upgrade the MIPP Experiment“ for details and further topics MIPP - Holger Meyer
MIPP Summary • MIPP finished taking data in February 2006.Data analysis is in progress and first results are coming out now. • A future run (if approved) will improve statistics and physics reach further. • MIPP is a very versatile experiment. • Interesting physics on its own • MIPP data is an important input for many other experiments • Atmospheric Neutrinos & Cosmic Rays: PIERRE AUGER, ICE CUBE • MINOS/MINERνA/NOνA, Super K/Hyper K (neutrino spectra) • CMS/Atlas (hadronic energy scale) • ILC calorimetry (hadronic energy scale/resolutions) MIPP - Holger Meyer
The End Backup slides MIPP - Holger Meyer
MIPP Detector Alignment • TPC ExB corrections could not be done well with bad alignment • Need to fit TPC residuals against know track positions from chambers MIPP - Holger Meyer
Beam Cherenkov Pressure Curves +40 GeV/c -40 GeV/c p+ p K- p- p- K+ p- p+ p K+ K- p- MIPP - Holger Meyer
50 GeV/c p-C Event Display MIPP - Holger Meyer
NuMI target in MIPP MIPP - Holger Meyer
Charged Kaon Mass in MIPP RICH ring radius of tagged p, K, p beam particles measures K mass relative to well know masses of p, p. With higher statistics this couldresolve the disagreement betweenexisting measurements, see PDG.Important for VUS. MIPP - Holger Meyer
Why study non-perturbative QCD? • We do not know how to calculate a single cross section in non-perturbative QCD! This is >99% of the total QCD cross section. Perturbative QCD has made impressive progress. But it relies on structure functions for its calculations, which are non-perturbative and derived from data. • Feynman scaling, KNO scaling, rapidity plateaus are all violated. We cannot predict elastic cross sections, diffractive cross sections, let alone inclusive or semi-inclusive processes. Regge ''theory'' is in fact a phenomenology whose predictions are flexible and can be easily altered by adding more trajectories. • All existing data are old, low statistics with poor particle id.MIPP data on LH2 will provide precise data to test new ideas. MIPP - Holger Meyer
General scaling law of particle fragmentation • States that the ratio of a semi-inclusive cross section to an inclusive cross section • whereM2, sand tare the Mandelstam variables for the missing mass squared, CMS energy squared and the momentum transfer squared between the particlesaandc. PRD18(1978)204. • Using EHS data, we have tested and verified the law in 12 reactions (DPF92) but only at fixed s. • MIPP will test the law as a function of s and t for various particle types a, b, and c for beam energies between ~5 GeV/c and 120 GeV/c to unprecedented statistical and systematic accuracy in 36 reactions. MIPP - Holger Meyer
Particle fragmentation scaling law – EHS results MIPP - Holger Meyer
Simulation of cosmic ray showers • Existing data is sparse: MIPP - Holger Meyer