10 likes | 142 Views
Magnet. C+C, 2AGeV. e -. e +. v/c. e -. e +. beam. v/c. Post2. Post1. +. Pre. -. SHOWER (eID). p. p + ; experiment two exponents. RICH. p ; experiment two exponents. TOF (eID). Tracking (MDC). q * p [MeV/c]. d. Velocity vs momentum of lepton candidates (RICH-track).
E N D
Magnet C+C, 2AGeV e- e+ v/c e- e+ beam v/c Post2 Post1 + Pre - SHOWER(eID) p p+; experiment two exponents RICH p; experiment two exponents TOF(eID) Tracking (MDC) q*p [MeV/c] d Velocity vs momentum of lepton candidates (RICH-track) p*q [MeV/c] • hadron contamination <2% particles from decayD Np ? In EXP baryons bounded in clusters (no deuterons from URQMD) Enhancement of low mom. pions P.Tlustý17, G.Agakichiev5, C.Agodi2, H.Alvarez-Pol19, E.Atkin13, A.Balanda4, G.Bellia2,3, D.Belver19, J.Bielcik5, M.Böhmer14, H.Bokemeyer5, J.Boyard16, P.Braun-Munzinger5, V.Chepurnov6, S.Chernenko6, T.Christ14, R.Coniglione2, H.Daues5, J.Diaz20, R.Djeridi8, F.Dohrmann18, I.Duran19, T.Eberl14, V.Emeljanov13, L.Fabbietti14, O.Fateev6, C.Fernandez19, P.Finocchiaro2, J.Friese14, I.Fröhlich8, B.Fuentes19, J.Garzon19, R.Gernhäuser14, M.Golubeva11, D.Gonzalez19, E.Grosse18, F.Guber11, J.Hehner5, T.Heinz5, T.Hennino16, S.Hlavac1, J.Hoffmann5, R.Holzmann5, A.Ierusalimov6, I.Iori9,10, M.Jaskula4, M.Jurkovic14, B.Kämpfer18, K.Kanaki18, T.Karavicheva11, I.Koenig5, W.Koenig5, B.Kolb5, U.Kopf5, R.Kotte18, J.Kotulic-Bunta1, R.Krücken14, A.Kugler17, W.Kühn8, R.Kulessa4, A.Kurepin11, T.Kurtukian-Nieto19, S.Lang5, J.Lehnert8, C.Maiolino2, J.Marín19, J.Markert7, Y.Mishin13, N.Montes19, J.Mousa15, M.Münch14, C.Müntz7, L.Naumann18, J.Novotný17, W.Ott5, J.Otwinowski4, Y.Pachmayer7, Y.Panebratsev6, V.Pechenov6, T.Perez8, J.Pietraszko5, R.Pleskač17, V.Pospíšil17, W.Przygoda4, N.Rabin12, B.Ramstein16, A.Reshetin11, J.Ritman8, G.Rodriguez Prieto19, M.Roy-Stephan16, A.Rustamov5, J.Sabin Fernandez19, A.Sadovsky18, B.Sailer14, P.Salabura4, M.Sanchez19, P.Sapienza2, A.Schmah5, C.Schroeder5, E.Schwab5, P.Senger5, R.Simon5, V.Smolyankin12, L.Smykov6, S.Spataro2, H.Stelzer5, H.Stroebele7, J.Stroth7,5, C.Sturm5, M.Sudol7,5, A.Titov6, A.Toia8, M.Traxler5, H.Tsertos15, A.Vazquez19, Y.Volkov13, V.Wagner17, W.Walus4, Y.Wang7, S.Winkler14, M.Wisniowski4, T.Wojcik4, J.Wüstenfeld7, Y.Zanevsky6, D. Žovinec1, P.Zumbruch5 PARTICLE IDENTIFICATION IN THE HADES SPECTROMETER AND PARTICLE PRODUCTION IN C+C AT 2 A GeV 1)Institute of Physics, Slovak Academy of Sciences, Bratislava, Slovakia 2)Istituto Nazionale di Fisica Nucleare- Laboratori Nazionali del Sud, Catania, Italy 3)Dipartimento di Fisica, Universita di Catania, Catania, Italy 4)Smoluchowski Institute of Physics, Jagiellonian University of Cracow, Cracow, Poland 5)Gesellschaft für Schwerionenforschung , Darmstadt, Germany 6)Joint Institute of Nuclear Research, Dubna, Russia 7)Institut für Kernphysik, Johann Wolfgang Goethe-Universität, Frankfurt, Germany 8)II.Physikalisches Institut, Justus Liebig Universität Giessen, Giessen, Germany 9)Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Milano, Italy 10)Dipartimento di Fisica, Universita di Milano, Milano, Italy 11)Institute for Nuclear Research, Russian Academy of Science, Moscow, Moscow, Russia 12)Institute of Theoretical and Experimental Physics, Moscow, Russia 13)Moscow Engineering Physics Institute (State University), Moscow, Russia 14)Physik Department E12, Technische Universität München, Garching, Germany 15)Department of Physics, University of Cyprus, Nicosia, Cyprus 16)Institut de Physique Nucléaire d'Orsay, CNRS/IN2P3, Orsay Cedex, France 17)Nuclear Physics Institute, Czech Academy of Sciences, Řež, Czech Republic 18)Institut für Kern- und Hadronenphysik, Forschungszentrum Rossendorf, Germany 19)Departamento de Física de Partículas. University of Santiago de Compostela, Santiago de Compostela, Spain 20)Instituto de Física Corpuscular, Universidad de Valencia-CSIC, Valencia, Spain HADES@GSI The HADES spectrometer installed at GSI Darmstadt is devoted to study production of di-electron pairs from proton- and pion-induced reactions and nucleus-nucleus collisions. Extraction of rare lepton pairs in high hadron multiplicity events requires efficient particle identification (PID). In HADES electrons are identified by a RICH as well as a Pre-Shower and a TimeOfFlight (TOF) detector. For all charged particles momentum is measured by a tracking system combined with a toroidal superconducting magnet, and the TOF detector provides velocity and energy loss. The particle identification method has been implemented, allowing efficient identification of particles, using full experimental information from all subdetectors. The basis of the method is test of hypothesis, that the reconstructed track can be identified as certain particle specie. Several measured variables associated to each identified track from various subdetectors are used to provide a set of probabilities in individual PID algorithms, which are then merged assuming their statistical independence. For the resulted PID probability calculation the Bayes method taking into account the prior abundance of individual particle types, as well as the known detector response, is implemented. The performance of the method - in terms of efficiency and purity - is then evaluated in detailed simulations. To demonstrate the method performance, single particle spectra of charged hadrons and electrons from C+C at 2 A GeV are presented and compared with results of corresponding simulations. In order to verify the method the proton and pion yields and transverse mass and rapidity distributions are compared with existing data. • e-,e+,p,identification • real-time lepton triggering • M=1-2%@ / • operation with p, , HI beams; B : 0-30, T: 0-60 MeV PID Method • PRINCIPLE: • for each track a probability that it is of a particle type h is calculated, for all possible particle types • Bayes theorem implemented • cut on the resulted probability set to decide on PID INPUT: • for each track (track candidate) with a given momentum we have a set of independent measured variables • in HADES: TOF/TOFino velocity, energy loss, RICH response, MDC hit, SHOWER response • OUTPUT: • a probability, that a given track corresponds to the particle type h • efficiency and purity for a selected cut STEP II - Combination of measurements STEP IV - PID decision - merging of information from several INDEPENDENT measurements, e.g. more subdetectors. If the probability density functions in each measurement are known,then the likelihood to observe track with measured for the particle type h is - if correlated variables are used, different approach has to be applied, e.g. principal component analysis used in RICH p.d.f. calculation. The number of variables is reduced to number of statisticaly independent „eigenvalues“ by diagonalizing the correlation matrix. • 1)A cut on the resulted probability is set to get PID, cut value is usually 0.5 (probability • of given particle type > 50%) • > cut • 2) For each particle type two „quality“ factors determined (from simulations): • Efficiency defined as ratio of number of correctly identified particles and number of all particles of given particle type in the input sample • Purity defined for a given particle type as ratio of the number of correctly identified particles to the number of all identifications of a given type STEP III - application of Bayes' theorem If probabilities of occurences of individual hypotheses == relative incident rates for each particle type in the PID case P(h) are known (or can be estimated from both experimental data and simulations), then STEP I - p.d.f.‘s where is probability that a track with measured is of a type h. There is clearly a need to take this into an account, as it changes the decision on the hypothesis test, compare Fig.1 with Fig.2 • Normalized probability density distributions • of each measured variable xkdetermined for each particle type h • from exp data when possible (good separation of particles) • interpolation and extrapolation of „difficult“ regions“ with overlap from different particles • from simulations if necessary (e.g. RICH response) References: BABAR Barlow et al. www.slac.stanford.edu/BFROOT/www/Statistics/Report/report.pdfFOCUS hep-ex/0108011STAR Fisyak www.usatlas.bnl.gov/~fisyak/d0/photons/pure.ps HERMES www.phys.ualberta.ca/~mvincter/hermes/documents/joe.ps.gzhypothesis testing: e.g. in A.G. Frodesen, O. Skjeggestad, and H. Tofte,Probability and Statistics in Particle Physics Columbia University Press, 1979, ISBN 8200019063 Fig.2 Distribution of velocities for protons and deuterons at particle momentum 750 MeV/c Fig.1 Probability density functions of velocities for protons and deuterons at particle momentum 750 MeV/c Experiment and Analysis • C+C 2AGeV commissioning run - lower momentum resolution data • 5% interaction target • LVL1 triggered events (Mch.>3): 36*106 events • tracking and momentum reconstruction using inner chambers and outer TOF/TOFino+SHOWER detectors • p10% at 0.7 GeV/c) • Simulation LVL1-Trigger: 19.5 x 106 (C+C @ 2 AGeV) UrQMD events, processed through GEANT3 • Analysis - HADES data analysis package HYDRA based on C++ and ROOT Hadron ID Lepton ID Hadrons are identified mainly using velocity and momentum measurements. Efficiency and purity of hadron identification • only tracks associated with the RICH ring are considered as lepton candidates • RICH variables, SHOWER charge ratio and velocity used for ID • leptons mainly from p0 Dalitz decay, analysis done simultaneously for EXP and URQMD data TOFino+PreSHOWER TOF Purity Purity RICH observables Pattern quality: Pad matrix, signal height Pattern density: Number of pads/maxima Pattern geometry: Ring-like shape Efficiency Efficiency SHOWER observables typical ring in RICH pad plane good ID up to p<1000 MeV/c, above it p+/p not separated due to low momentum resolution (incomplete tracking setup) Pion yields per reaction most of RICH observables are stromgly correlated • Estimate of averaged number of participants Apart - URQMD events after 1st level trigger: Apart= 7.91, in EXP number of detected charged baryons (p+d) higher by 1.083 than in SIM (p only) - different centrality selection! For EXP Apart=7.91*1.083=8.57 • result: Np/ Apart = 0.148 ± 0.015 Np= (Np+Np)/2 • TAPS for p0 shows Np/ Apart = 0.138 ± 0.014 p Principal Component Analysis: p Leptons identified by producing an electromagnetic shower • An increase in charge on post1 or post2 is an electron signature. Charge multiplication factors - + p Momentum distributions Rapidity distributions simulation experiment This method diagonalizes the covariance matrix of the observables and yields the eigenvectors of the distribution, which have the maximum information content. This allows to reduce the number of dimensions without significant loss of information. Multiplicity distributions of leptons The method developement and analysis are under progress. Presented results on leptons are obtained by combining the probabilistic approach with a „standard“ cut method. Shown results for both hadrons and leptons suffer from low momentum resolution and imperfect track reconstruction due to uncomplete detector setup. counts/event (kick track>0) counts/event (kick track>0) e+ emission 4p simulation experiment e+ e- mT distributions T from fits [MeV] Momentum distributions of leptons p p e+ e- At present we are analyzing the data from more recent experiment with setup incorporating also outer MDC chambers, i.e. data with better momentum resolution. • In simulation inverse slopes from UrQMD input correctly reconstructed - no bias made by acceptance and momentum resolution • EXP data show two slopes shape • Different results for p+and p–: acceptance and correction? • Higher values of T of pions agree with simulation • Agreement with KaOS results: 40 ± 3;86 ± 3 MeV