1 / 35

Dielectron production in C+C collisions at 2AGeV with HADES

Dielectron production in C+C collisions at 2AGeV with HADES. Jochen Markert For the HADES Collaboration. Dielectron production in C+C collisions at 2AGeV with HADES. Reconstruction of the electron signal Results from C+C collisions at 2AGeV Comparison with models Comparison with DLS.

aysel
Download Presentation

Dielectron production in C+C collisions at 2AGeV with HADES

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Dielectron production in C+C collisions at 2AGeV with HADES Jochen Markert For the HADES Collaboration

  2. Dielectron production in C+C collisions at 2AGeV with HADES • Reconstruction of the electron signal • Results from C+C collisions at 2AGeV • Comparison with models • Comparison with DLS Jochen Markert - QM 2006

  3. Opening angle > 9o Introduction C+C at 2AGeV • Large pair acceptance ~35% • Trigger • 1st level : charged particle mult. > 4 (60% reaction ) • 2nd level: RICH+TOF/PreSHOWER → enhancement ~10 • 9% dM/M resolution at 0.8 GeV/c2 Mee • Total statistic: 650 M 1st level events Averaged over 0 < Y < 2 Jochen Markert - QM 2006

  4. DATA Selection criteria Single e+,e- • Hit matching • RICH rings ↔ MDC tracks • MDC tracks ↔ TOF and PreShower hits • PID : e+, e- • β vs momentum correlation • PreShower condition • Background rejection cuts • Opening angle > 9° Jochen Markert - QM 2006

  5. Spectra before efficiency correction ~ 23000 signal pairs for full Mee range ~ 2000 signal pairs for full Mee > 150 MeV/c2 Jochen Markert - QM 2006

  6. Cocktail A: 0 + η + ω “long lived components“ • Cocktail B: Cocktail A + Δ + ρ 18 % 21 % Comparison of the data with cocktail • Event generatorPLUTO : • thermal source (T=80MeV) •  polar angle distribution from charged  analysis • η (TAPS data) • ρ, ω : m-scaling • Δ scales with  systematic errors: 15 % - efficiency correction 10 % - combinatorial background 11 % - 0 normalization Jochen Markert - QM 2006

  7. RQMD:M. D. Cozma, C. Fuchs, E. Santini, A. Faessler, Phys. Lett. B 640, 150 (2006) • UrQMD:D. Schumacher, S. Vogel, M. Bleicher, nucl-th/06080401. • HSD (v2.5):W. Cassing and E. L. Bratkovskaya, Phys. Rep. 308, 65 (1999). • Yield over Cocktail A • Cocktail B/ Cocktail A • factor 2 below data in 200< Mee <500 MeV/c2 • factor 4 below data in 500<Mee<650 MeV/c2 • Closer to data than cocktail B • But model calculations • Undershoot between 200<Mee<500 MeV/c2 • Overshoot for Mee> 700 MeV/c2 “free” spectral function Comparison of the data with models C+C at 2AGeV Jochen Markert - QM 2006

  8. η ω P┴ and Y distributionscomparison data vs. cocktail preliminary • Mee < 150 MeV/c2 :Data well described (0-Dalitz region) • 150 < Mee < 550 MeV/c2 :Underestimation over whole p range (factor 2). Jochen Markert - QM 2006

  9. DLS HADES η F(1.04) = 6.5 ± 0.5(stat) ± 2.1(sys) F(2.0) = 2.07 ± 0.21(stat) ± 0.38(sys) Comparison of C+C of DLS(1.04AGeV) and HADES(2.0AGeV) R. J. Porter et al., Phys. Rev. Lett. 79 1229 (1997) Enhancement factor F over ηfor 150<Mee<500 MeV/c2 : Jochen Markert - QM 2006

  10. R. Averbeck et al., TAPS coll., Z. Phys. A 359, 65 (1997) • R. Holzmann et al., TAPS coll., Phys. Rev. C 56, R2920 (1997) DLS η Yexc(2.0)/Yexc(1.04) = 2.5 ± 0.5(stat) ± 1.5(sys) Comparison of C+C of DLS(1.04AGeV) and HADES(2.0AGeV) DLS F(1.04) = 6.5 ± 0.5(stat) ± 2.1(sys) HADES F(2.0) = 2.07 ± 0.21(stat) ± 0.38(sys) Jochen Markert - QM 2006

  11. TAPS, KaoS measurements: Excess yield : Excess yield scales like 0 ! A closer look to the excess yield Jochen Markert - QM 2006

  12. C+C at 1 AGeV (HADES)before efficiency correction • Spectrum before efficiency correction • Enhancement factor F(1.0) ≈ 5.8 (in 150<Mee<500 MeV/c2 range) • Enhancement within errors in agreement with DLS HADES preliminary Jochen Markert - QM 2006

  13. Summary & outlook OutLook • Ongoing analysis of • p+p at 2.2 GeV (Jan. 04)  exp. check of η reconstruction eff. • C+C at 1 AGeV (Aug. 04)  direct comparison with DLS • Ar+KCl at 1.757 AGeV (Sep. 05) • p+p at 1.25 GeV (Jan. 06)  Δ production • Next physics runs • p/d+p, at 3.5/1.25 AGeV (Spring. 07)  ω production/isospin dependence • p+A (2007+) • Heavy systems, pion beam (2008/9) Summary • 2 AGeV C+C dielectron spectra • excess yield established • no specific pdependence for enhancement • Comparison to models ongoing • Comparison to DLS: • Preliminary 1 AGeV spectra shows no contradiction to DLS data • Excess of yield for 150<Mee<500 MeV/c2 measured at 1.04 and 2 AGeV scales like 0 multiplicity Jochen Markert - QM 2006

  14. The HADES collaboration • Bratislava (SAS, PI), Slovakia • Catania (INFN - LNS), Italy • Cracow (Univ.), Poland • Darmstadt (GSI), Germany • Dresden (FZD), Germany • Dubna (JINR), Russia • Frankfurt (Univ.), Germany • Giessen (Univ.), Germany • Milano (INFN, Univ.), Italy • Munich (TUM), Germany • Moscow (ITEP,MEPhI,RAS), Russia • Nicosia (Univ.), Cyprus • Orsay (IPN), France • Rez (CAS, NPI), Czech Rep. • Sant. de Compostela (Univ.), Spain • Valencia (Univ.), Spain • Coimbra (Univ.), Portugal Jochen Markert - QM 2006

  15. The END Thank you for your attention

  16. Pluto vs Hades data preliminary Hades@GSI and DLS@LBL • design • π0, η acceptance • C+C @ 1AGeV • Comparison with Pluto cocktail π0→e+e–γ η→e+e–γ Hades DLS Hades DLS mid-rapidity mid-rapidity Jochen Markert - QM 2006

  17. Phase space coverage: HADES vs DLS π0→e+e–γ η→e+e–γ • A direct Comparison between HADES and DLS dielectron results not feasible Jochen Markert - QM 2006

  18. Efficiency corrections Efficiency matrix is created for single leptons (e+, e-) in p (0 – 2 GeV/c), Θ (0o – 90o), Φ (0o – 360o) averaged over momentum averaged over all sectors Jochen Markert - QM 2006

  19. Acceptance matrix Acceptance matrix is created in p (0 – 2 GeV/c), Φ (0o – 60o), Θ (0o – 90o) for the single leptons. Integrating over internal dilepton angle → Pair acceptance matrix: Mee, PT and Y Jochen Markert - QM 2006

  20. Acceptance matrix is created in p (0 – 2 GeV/c), Φ (0o – 60o) and Θ (0o – 90o) for the single leptons. • Integrating over internal dilepton angle one can create pair acceptance matrix in 3D: Mee, PT and Y Opening angle > 9o Acceptance matrix Jochen Markert - QM 2006

  21. Experiment Simulation Theory Event Generator Physics AcceptanceFilter HADES Detector Simulation dN/dM RawData Monte-Carlo Data Analysis Analysis Efficiency Correction PairSpectra Pair Spectra Analysis flow Jochen Markert - QM 2006

  22. Events 46% - LVL2 60% - LVL1 242 M - recorded events 217 M – trigger M4 events 6 % of LVL1 events are also LVL2 Days of data taking Evaluation of the statistics • all files • all good files • only M4 events • only events with >=1 track Jochen Markert - QM 2006

  23. UrQMD σgeom - Π b2max σtot 6 4 2 impact parameter [fm] σreac σtrigger * in agreement with Kox et all. 864 ± 45 mbarn LVL1 trigger - centrality selection Jochen Markert - QM 2006

  24. Normalization factor • respective number of LVL1 events * DS factor : 6.5 ● 108 • 0multiplicity extrapolated into 4Π : 1.15 • efficiency of the LVL2 trigger : 0.92 Jochen Markert - QM 2006

  25. 1 m The spectrometer concept • During run in November 2002 • RICH, inner MDC’s, TOF and SHOWER ready • outer MDC’s only partly installed • In analysis presented here only inner MDC’s are used • Geometry • Full azimuth, polar angles 18o - 85o • Pair acceptance  0.35 • About 80.000 detector channels • Particle identification • RICH: CsI solid photo cathode, C4F10 radiator, No  80, pion suppression  104 • TOF: 384 scintillator rods • TOFino: 24 scintillator paddles temporary solution, RPC in future • Pre-Shower: 18 pad chambers & lead converters) • Momentum measurement • Magnet: superconducting Toroid with Br = 0.36 Tm • MDC: 24 multi-wire drift chambers, single-cell resolution  140 mm Jochen Markert - QM 2006

  26. Lepton multiplicity per event • ~7% of the events contain 2 opposite sign leptons • ~7% of the events contain 2 like sign leptons • ~83% of the events contain only 1 lepton Jochen Markert - QM 2006

  27. Simulation p*q [MeV/c] Single leptons: Efficiency and Purity Efficiency:  80% Purity:  85% Contamination: • lepton fakes  15% (mainly close pairs) • hadrons < 3% Jochen Markert - QM 2006

  28. Relative suppression C1 C2 C3 Background rejection <9o TOF/Shower <90 MDC I-II RICH C1 C2 C3 close conversion candidate Shared detector hit Close pair C1 – the only pair cut C2, C3 – lepton cuts Jochen Markert - QM 2006

  29. Combinatorial background same event Like-Sign (sLS) vs. mixed event Opposite-Sign (mOS) Mee > 150MeV/c2 combinatorial background: M < 150 MeV/c2 - sLS M > 150 MeV/c2 - mOS • Normalization done between 150-550 MeV/c2 Mee • sLS and mOS background show same behavior for Mee > 150 MeV/c2 Mee > 150MeV/c2 Jochen Markert - QM 2006

  30. 18 % 21 % Summary of the eff corrections, normalization and systematic errors • Components for the efficiency corrections: • efficiency correction • opening angle correlation • tracking efficiency – 92% for each singles • Components for the normalization: • number of LVL1 * DS events • second level trigger (LVL2) efficiency – 92% • 0 multiplicity into 4 - 1.15 • Components for the systematic errors: • 15 % - efficiency correction (self-consistence check) • 10 % - combinatorial background • 11 % - 0 normalization Jochen Markert - QM 2006

  31. combinatorial background efficiency corrections at maximum 15% at maximum 10% Estimation of the systematic errors • Normalization to 0 multiplicity • 11 % systematic error comes from: • efficiency/purity corrections • extrapolation to 4, full momenta Jochen Markert - QM 2006

  32. THEORY SIMULATION Self-consistency check of efficiency correction Pluto data through HADES acceptance filter Pluto data through reconstruction chain and efficiency correction Jochen Markert - QM 2006

  33. Yexc(2.0)/Yexc(1.04) = 2.5 ± 0.5(stat) ± 1.5(sys) Comparison of C+C of DLS(1.04AGeV) and HADES(2.0AGeV) F(1.04) = 6.5 ± 0.5(stat) ± 2.1(sys) F(2.0) = 2.07 ± 0.21(stat) ± 0.38(sys) Jochen Markert - QM 2006

  34. η ω P┴ and Y distributionscomparison Data vs. PLUTO Good agreement for the low masses ! No strong P┴ dependence for enhancement ! Jochen Markert - QM 2006

  35. in-medium Comparison of the data with models • RQMD Tübingen C.Fuchs, D. Cozma • HSD Gießen (v2.5) E. Bratkovskaya, W. Cassing • In-medium calculation • Undershoot between 200<Mee<500 MeV/c2 (HSD) • Overshoot between 450<Mee<600 MeV/c2 (RQMD) Jochen Markert - QM 2006

More Related