630 likes | 816 Views
Estructura de Datos Lineales. Arboles. Introducción. Las estructuras array y listas son estructuras de datos lineales. A cada elemento le correspondía siempre un siguiente elemento.
E N D
Estructura de Datos Lineales Arboles UNIVERSIDAD DEL CAUCA - PIS Ing. Miguel Angel Niño Zambrano EDII
Introducción • Las estructuras array y listas son estructuras de datos lineales. A cada elemento le correspondía siempre un siguiente elemento. • Los Arboles y Grafos son estructuras de datos no lineales puesto que pueden tener diferentes siguientes elementos, y también se conocen como estructuras multi - enlazadas UNIVERSIDAD DEL CAUCA - PIS Ing. Miguel Angel Niño Zambrano EDII
Terminología básica • Un árbol es un conjunto, de vértices y arcos que satisfacen ciertos requerimientos. Un vértice es un objeto simple (conocido también como nodo) que puede tener un nombre, además de cierta información; un arco es la unión entre dos vértices. UNIVERSIDAD DEL CAUCA - PIS Ing. Miguel Angel Niño Zambrano EDII
Terminología básica • Una ruta, en un árbol, es una lista de diferentes vértices en la que los vértices consecutivos se conectan por medio de arcos dentro del árbol. Uno de los nodos del árbol se identifica como raíz (root). • Existe exactamente una ruta entre la raíz y un nodo. UNIVERSIDAD DEL CAUCA - PIS Ing. Miguel Angel Niño Zambrano EDII
Terminología básica • Esta definición implica queno existen direcciones en los arcos, normalmente pensamos en los arcos como cualquier punto más allá de la raíz. • Cada nodo, excepto la raíz, tiene exactamente un nodo arriba de él (padre) así, los nodos que se encuentran directamente abajo de algún nodo se denominan hijos. UNIVERSIDAD DEL CAUCA - PIS Ing. Miguel Angel Niño Zambrano EDII
Terminología básica • Los nodos que no tienen hijos se conocen como hojas o nodos terminales. Así, un nodo con al menos un hijo es un nodo no terminal. UNIVERSIDAD DEL CAUCA - PIS Ing. Miguel Angel Niño Zambrano EDII
Definición recursiva • Base. Un nodo sencillo n es un árbol (árbol trivial). Decimos que n es es la raíz de ese árbol de un sólo nodo. • Inducción. Sea v un nuevo nodo y sean T1, T2, ..., Tk uno o más árboles con raíces c1, c2, ..., ck, respectivamente. UNIVERSIDAD DEL CAUCA - PIS Ing. Miguel Angel Niño Zambrano EDII
Definición recursiva • Requerimos que ningún nodo aparezca más de una vez en los árboles Ti's; y por supuesto, v, siendo un "nuevo" nodo, no puede estar en ninguno de estos árboles. UNIVERSIDAD DEL CAUCA - PIS Ing. Miguel Angel Niño Zambrano EDII
Definición recursiva • Generamos un nuevo árbol T de v y T1, T2, ..., Tk de la siguiente forma: a) Hacemos v la raíz de T b) Adicionamos un arco de v a cada c1, c2, ..., ck, haciendo a cada uno de estos últimos un hijo de la raíz v. Otra forma de ver este paso es que hemos hecho a v el padre de cada una de las raíces de los árboles T1, T2, ..., Tk. UNIVERSIDAD DEL CAUCA - PIS Ing. Miguel Angel Niño Zambrano EDII
Árboles ordenados, orientados y libres • Un árbol es ordenado cuando el orden de los subárboles es importante; cuando no se considera un orden para los subárboles, el árbol es orientado. En este último caso, si la dirección de los arcos se ignora, el árbol eslibre. UNIVERSIDAD DEL CAUCA - PIS Ing. Miguel Angel Niño Zambrano EDII
Árboles ordenados, orientados y libres UNIVERSIDAD DEL CAUCA - PIS Ing. Miguel Angel Niño Zambrano EDII
Subárboles • En un árbol T, un nodo n, junto con todos sus descendientes, es llamado un subárbol de T. El nodo n es la raíz de este subárbol. • Cada nodo es una raíz de un subárbol formado por él y los nodos debajo de él. UNIVERSIDAD DEL CAUCA - PIS Ing. Miguel Angel Niño Zambrano EDII
Subárboles UNIVERSIDAD DEL CAUCA - PIS Ing. Miguel Angel Niño Zambrano EDII
Nivel, altura y longitud de ruta • Los nodos en un árbol lo dividen en niveles: el nivel de un nodo es el número de nodos en la ruta de ese nodo hasta la raíz (sin incluirlo a él mismo). • La altura de un árbol es el nivel máximo entre todos los nodos del árbol. • La longitudde ruta de un árbol es la suma de los niveles de todos los nodos en el mismo UNIVERSIDAD DEL CAUCA - PIS Ing. Miguel Angel Niño Zambrano EDII
Árbol dirigido • Un árbol es dirigido si cada nodo tiene una dirección hacia algún otro nodo sin contener ciclos. • Un árbol es dirigido por la raíz si existe un sólo vértice r llamado raíz, con un grado de conectividad de entrada id(r) = 0 y para el resto de los vértices v del árbol id(v) = 1. UNIVERSIDAD DEL CAUCA - PIS Ing. Miguel Angel Niño Zambrano EDII
Anexo B UNIVERSIDAD DEL CAUCA - PIS Ing. Miguel Angel Niño Zambrano EDII
Árbol binario • Un árbol binario es un conjunto finito de elementos que, o está vacío, o está formado de tres partes: la primera parte consiste en un elemento denominadoraíz; las otras dos partes son, por sí mismas, árboles binarios, denominados subárbol izquierdo ysubárbol derecho. UNIVERSIDAD DEL CAUCA - PIS Ing. Miguel Angel Niño Zambrano EDII
Anexo B UNIVERSIDAD DEL CAUCA - PIS Ing. Miguel Angel Niño Zambrano EDII
Árbol binario • Estos subárboles pueden estar vacíos. Cada elemento de un árbol binario se denomina nodo. • En un árbol binario, generalmente se cumple que, para cada nodo: los hijos izquierdos de un nodo son menores a él y los hijos derechos de un nodo son mayores a él. UNIVERSIDAD DEL CAUCA - PIS Ing. Miguel Angel Niño Zambrano EDII
Árbol binario • Recursivamente definimos un árbol binario: Base. El árbol vacío es un árbol binario Inducción. Si r es un nodo, y T1 y T2 son árboles binarios, entonces, existe un árbol binario con raíz r, un subárbol izquierdo T1 y un subárbol derecho T2. UNIVERSIDAD DEL CAUCA - PIS Ing. Miguel Angel Niño Zambrano EDII
Propiedades • Existe exactamente una ruta que une cualquier par de nodos en un árbol • Un árbol con N nodos tiene N - 1 arcos • Un árbol binario con N nodos internos tiene N + 1 nodos externos • La longitud de ruta externa de cualquier árbol binario con N nodos internos es 2N veces más grande que la longitud de ruta interna UNIVERSIDAD DEL CAUCA - PIS Ing. Miguel Angel Niño Zambrano EDII
Definiciones • Cuando un árbol binario tiene exactamente cero o dos subárboles es llamado árbol estrictamente binario, de otra forma, es un árbol de Knuth. UNIVERSIDAD DEL CAUCA - PIS Ing. Miguel Angel Niño Zambrano EDII
Definiciones UNIVERSIDAD DEL CAUCA - PIS Ing. Miguel Angel Niño Zambrano EDII
Definiciones • Un árbol binario estricto de altura d es balanceadocuando cada hoja en el árbol está en el nivel d o d - 1. • Un árbol binario estricto de altura d es completamente balanceado si todas sus hojas o nodos terminales se encuentran en el nivel d. UNIVERSIDAD DEL CAUCA - PIS Ing. Miguel Angel Niño Zambrano EDII
Definiciones UNIVERSIDAD DEL CAUCA - PIS Ing. Miguel Angel Niño Zambrano EDII
Definiciones UNIVERSIDAD DEL CAUCA - PIS Ing. Miguel Angel Niño Zambrano EDII
Bosques • Un bosque es un conjunto de árboles disjuntos, y puede ser transformado en un árbol de Knuth con el algoritmo siguiente: 1. Ligar las raíces de los árboles del bosque y seleccionar a la raíz del árbol a la izquierda como la raíz del nuevo árbol UNIVERSIDAD DEL CAUCA - PIS Ing. Miguel Angel Niño Zambrano EDII
Bosques 2. Ligar a todos los hermanos de cada padre 3. Retirar todas las ligas de un padre a sus hijos excepto la del hijo de la izquierda UNIVERSIDAD DEL CAUCA - PIS Ing. Miguel Angel Niño Zambrano EDII
Anexo B UNIVERSIDAD DEL CAUCA - PIS Ing. Miguel Angel Niño Zambrano EDII
Anexo B UNIVERSIDAD DEL CAUCA - PIS Ing. Miguel Angel Niño Zambrano EDII
Anexo B UNIVERSIDAD DEL CAUCA - PIS Ing. Miguel Angel Niño Zambrano EDII
Anexo B UNIVERSIDAD DEL CAUCA - PIS Ing. Miguel Angel Niño Zambrano EDII
Operaciones en árboles binarios • INFO(p). Regresa el contenido de n. • LEFT(p). Regresa un apuntador al hijo izquierdo de n. • RIGHT(p). Regresa un apuntador al hijo derecho de n. • FATHER(p). Regresa un apuntador al padre de n. • BROTHER(p). Regresa un apuntador al hermano de n. UNIVERSIDAD DEL CAUCA - PIS Ing. Miguel Angel Niño Zambrano EDII
Operaciones en árboles binarios • ISLEFT(p). Regresa un valor verdadero (TRUE) si n es un hijo izquierdo. • ISRIGHT(p). Regresa un valor verdadero (TRUE) si n es un hijo derecho. • MAKETREE(x). Crea un nuevo árbol binario formado por un solo nodo con información x y regresa un apuntador a ese nodo. UNIVERSIDAD DEL CAUCA - PIS Ing. Miguel Angel Niño Zambrano EDII
Operaciones en árboles binarios • SETLEFT(p,x). Recibe un apuntador p a un nodo de un árbol binario que no tenga hijo izquierdo. Crea un nuevo hijo izquierdo a ese nodo con información x. • SETRIGHT(p,x). Recibe un apuntador p a un nodo de un árbol binario que no tenga hijo derecho. Crea un nuevo hijo derecho a ese nodo con información x. UNIVERSIDAD DEL CAUCA - PIS Ing. Miguel Angel Niño Zambrano EDII
Anexo A • Programa 54 UNIVERSIDAD DEL CAUCA - PIS Ing. Miguel Angel Niño Zambrano EDII
Recorrido de árboles • Recorrer un árbol es un método de visitas de sus nodos con el objeto de sistematizar la recuperación de la información almacenada en los mismos. • Los recorridos pueden practicarse sistematizando la visita de los subárboles. UNIVERSIDAD DEL CAUCA - PIS Ing. Miguel Angel Niño Zambrano EDII
Recorrido de árboles. Preorder Función Preorder { Se visita el nodo Si el subárbol izquierdo existe y no se ha visitado: llamar a Preorder Si el subárbol derecho existe y no se ha visitado: llamar a Preorder Regresar } UNIVERSIDAD DEL CAUCA - PIS Ing. Miguel Angel Niño Zambrano EDII
Recorrido de árboles. Inorder Función Inorder { Si el subárbol izquierdo existe y no se ha visitado: llamar a Inorder Se visita el nodo Si el subárbol derecho existe y no se ha visitado: llamar a Inorder Regresar } UNIVERSIDAD DEL CAUCA - PIS Ing. Miguel Angel Niño Zambrano EDII
Recorrido de árboles. Postorder Función Postorder { Si el subárbol izquierdo existe y no se ha visitado: llamar a Postorder Si el subárbol derecho existe y no se ha visitado: llamar a Postorder Se visita el nodo Regresar } UNIVERSIDAD DEL CAUCA - PIS Ing. Miguel Angel Niño Zambrano EDII
Anexo B UNIVERSIDAD DEL CAUCA - PIS Ing. Miguel Angel Niño Zambrano EDII
Borrado de nodos • Para borrar cualquier nodo de un árbol binario, se debe de colocar en su lugar el nodo que está más a la izquierda del subárbol derecho o el nodo que está más a la derecha del subárbol izquierdo. UNIVERSIDAD DEL CAUCA - PIS Ing. Miguel Angel Niño Zambrano EDII
Anexo B UNIVERSIDAD DEL CAUCA - PIS Ing. Miguel Angel Niño Zambrano EDII
Balanceo de Árboles • Cuando un árbol se desbalancea es necesario realizar una serie de rotaciones que acomoden la nueva raíz y se genere un árbol balanceado. • Primero, es necesario saber cuándo un árbol se ha desbalanceado. Para ello es necesario llevar una ponderación en cada nodo a medida que se insertan nuevos elementos. UNIVERSIDAD DEL CAUCA - PIS Ing. Miguel Angel Niño Zambrano EDII
Árbol balanceado UNIVERSIDAD DEL CAUCA - PIS Ing. Miguel Angel Niño Zambrano EDII
Balanceo de Árboles • Así, si un nodo no tiene hijos o tiene ambos, su ponderación será de 0. Si tiene el hijo izquierdo, pero no el derecho, se le restará a su ponderación un 1. Si tiene el hijo derecho, pero no el izquierdo, se le sumará a su ponderación un 1. Así, cuando un nodo tenga una ponderación mayor a 1 o menor a -1, ese nodo se encuentra desbalanceado. UNIVERSIDAD DEL CAUCA - PIS Ing. Miguel Angel Niño Zambrano EDII
Balanceo de Árboles • Cuatro rotaciones (depende del pivote) • Rotación sencilla izquierda • Rotación sencilla derecha • Rotación doble izquierda • Rotación doble derecha UNIVERSIDAD DEL CAUCA - PIS Ing. Miguel Angel Niño Zambrano EDII
Anexo B UNIVERSIDAD DEL CAUCA - PIS Ing. Miguel Angel Niño Zambrano EDII
UNIVERSIDAD DEL CAUCA - PIS Ing. Miguel Angel Niño Zambrano EDII
UNIVERSIDAD DEL CAUCA - PIS Ing. Miguel Angel Niño Zambrano EDII