400 likes | 418 Views
ASPECTS OF f-ELEMENTS A personal itinerary. Pekka PYYKKÖ (Department of Chemistry, Universit y of Helsinki, Finland) 15 December 2014. IOVI OPTIMO MAXIMO ET GENIO LOCI (IOMGL). Mentioned 69 times in the Clauss-Slaby inscription database. JOHAN GADOLIN’S 1794 ANALYSIS.
E N D
ASPECTS OF f-ELEMENTSA personal itinerary Pekka PYYKKÖ (Department of Chemistry, University of Helsinki, Finland) 15 December 2014
IOVI OPTIMO MAXIMO ET GENIO LOCI (IOMGL) Mentioned 69 times in the Clauss-Slaby inscription database.
JOHAN GADOLIN’S 1794 ANALYSIS Swedish version [1], Germantranslation [2]. Finds a new oxide (’earth’); an unspecifiedmixture of (Y, La-Lu). FirstconfirmationbyEkeberg in 1797 [3]. Names ’yttria’. The name ’gadolinium (Gd)’ by de Marignac [4]. Magnus → Maunula → Magnulin → Gadolin (gadol) . J. Gadolin, Kungl. Vetenskapsakad. Handlingar(1794) 137-155. J. Gadolin, CrellsAnn. (1796) 313-329. A. G. Ekeberg, Kungl. Vetenskapsakad. Handlingar(1797) 156-164. J.-C. G. de Marignac, as quotedbyLecoq de Boisbaudran, C.R. Acad. Sci . 102 (1886) 902.
Mineralet FeBe2Y2Si2O10gadolinit (Klaproth ≤1801). Grundämnet ’Gadolinium (Gd)’ , Lecoq de Boisbaudran, CR Ac. Sci. 102 (1886) 902: ’M. de Marignac a bien voulu me charger d’annoncer … qu’il a choisi le nom de gadolinium (symbole Gd).’ Finska Vetenskaps-Societetens Festschrift 1910. Frimärke 1960. Minnesskyltarna vid Kaskisgatan 6. ÅA: ’Gadolinia’. ’Gadolingatan / Gadolininkatu’ i Gumtäkt. Johan Gadolin: Hedersbetygelser
THE PERIODIC SYSTEM, Z = 1 - 172 P. Pyykkö, PCCP 13 (2011) 161.
1. CRYSTAL-FIELD THEORY 1973 Pseudocontact NMR shifts due to lanthanide ions. Arbitrary set of crystal-field parameters. 2x3 = 6. Cp. Bleaney’s 1972 theory with lowest-order terms. Fortran-code written. Use Racah algebra. The issue: Dependence of the shift on the particular lanthanide. The shift looks like a contact shift but occurs on a remote C-13 or H-1 nucleus having no overlap with the lanthanide. R.M. Golding, P. Pyykkö, Mol. Phys. 26 (1973) 1389. (No27).
A Ln/An COMPARISON 1978 P. Pyykkö, ’Relativistic quantum chemistry’, Adv. Quantum Chem. 11 (1978) 353-409. (No. 44)
2. DF-OCE AND THE LANTHANIDE/ACTINIDE CONTRACTIONS 1978 Use hydride models, such as CeH4 vs. HfH4. Also ThH4 vs. (104)H4. Contractions 19.0 pm and 30 pm, respectively. Non-relativistic lanthanide contraction 16.4 pm or 86% of the relativistic one. Also mono-, di- and hexahydride models. P. Pyykkö, J-P. Desclaux, Chem. Phys. 34 (1978) 261. (No46).
3. REX 1981 Semiempirical MO:s and their energies for basic actinide systems, such as uranyl or UF6 [1]. La théorie à trous for the electric field gradient, q, at An [2] Right or wrong? Later ab initio work, see [3]. 6p+, 5f-. Once more conforms to the picture of the main valence orbitals being 6d = 5f > 6p > 7s > 7p. The covalent molecular orbitals of small d0 f0 U(VI) molecules contain about 5f 2 6d 1. Double-zeta STO fits for the radial functions fitted to the Dirac-Fock atomic orbitals. Much help for these auxiliary developments from Matti Hotokka Leif Laaksonen, Liisa Laakkonen, Kazuyuki Tatsumi. P. Pyykkö, L. L. Lohr Jr, Inorg. Chem. 20 (1981) 1950. (No.59). S. Larsson, P. Pyykkö, Chem. Phys. 101 (1986) 355. (No. 94). J. Autschbach &, J. Chem. Theory Comp. 8 (2012) 4239.
REXNMR 1981 The first implementation[1] of my relativistic theory of NMR spin-spin coupling tensors. Was used on UF6 in [2]. P. Pyykkö, L. Wiesenfeld, Mol. Phys. 43 (1981) 557. (No.64). N. Rösch, P. Pyykkö, Mol. Phys. 57 (1986) 193. (No. 95).
THE 1987 REVIEW Reviewed the semiempirical and ab initioliterature on Ln & An. Proc. 2nd ICLA, 76 references. Three pages. P. Pyykkö, Inorg. Chim. Acta 139 (1987) 243. (No.105).
4. PSEUDOPOTENTIAL AB INITIO-WORK 1991- Only HF-level in the beginning. Correlated calculations and DFT later. Frozen-soft-mode theory of the large variations of the U-O distances from ’uranyl’ to ’anti-uranyl’ systems. A crude UO66- model.[1,2]. Equatorial coordination of uranyl to nitrate etc.[2]. Predict new isoelectronic species, such as NUO+ . P. Pyykkö, Y-F Zhao Inorg. Chem. 30 (1991) 3787. (No.135). P. Pyykkö, J. Li, N. Runeberg, J. Phys. Chem. 98 (1994) 4809. (No.146).
THE ’FROZEN SOFT MODE’ 1991, 1994 P. Pyykkö, Y-F Zhao, Inorg. Chem. 30 (1991) 3787. (No. 135) P. Pyykkö, J. Li, N. Runeberg, J. Phys. Chem. 98 (1994) 4809.(No. 146)
URANYL AND ANTIURANYL SYSTEMS 1991- Frozen-soft-modetheory of the largevariations of the U-O distancesfrom ’uranyl’ to ’anti-uranyl’ systems. A crude UO66- model.[1,2]. P. Pyykkö, Y-F Zhao, Inorg. Chem. 30 (1991) 3787. (No.135). P. Pyykkö, J. Li, N. Runeberg, J. Phys. Chem. 98 (1994) 4809. (No.146) V.A. Glebov, Electronic Structure and Properties of UranylCompounds (in Russian), Energoatomizdat, 1983.
THE TRIPLE BOND IN URANYL Firstdeducedby Pauling[1] frombondlengths. Seen in detailfrom the molecular-orbitalstructure [2]: (6p)6σg2πg4πu4σu2, (5f)0 , 12-e. OΞUΞO2+ ! AlsodeducedfromvibrationalspectroscopybyDenning [3]. Likewiseoccurs in isoelectronicspecies, such as NUO+ . L. Pauling, Proc. Nat. Acad. Sci. 72 (1975) 4200-4202. P. Pyykkö, J. Li, N. Runeberg, J. Phys. Chem. 98 (1994) 4809-4813 (No.146). R.G. Denning, Struct. Bonding 79 (1992) 215-276.
5. A REALLY WILD PROPOSAL: UO6 (Oh). IS IT U(XII)? A localminimumwasfound [1]. Laterwork [2] revealsthat the side-on, peroxidestructures lie muchlower. P. Pyykkö, N. Runeberg, M. Straka, K. G. Dyall, Chem. Phys. Lett. 328 (2000) 415. (No.203). H. Xiao, H-S. Hu, W.H.E. Schwarz, J. Li, J. Phys. Chem. A 114 (2010) 8837.
6. ACTINIDE OXYFLUORIDES The f0actinylsareactuallyabout f2 d1, as mentionedearlier. An interestingsymmetrychange is from UF82- (D4d) to PuF8 (Oh). Energetics of PuO4 etc. M. Straka, K.G. Dyall, P. Pyykkö Theor. Chem. Acc. 106 (2001) 393. (No.210).
7. ”WHY ARE URANIUM CYANIDES RARE WHILE U-F AND U-O BONDS ARE COMMON AND SHORT? ” -CN and U arebothσdonors and πacceptors. Halogensareσacceptors and πdonors. Because of πdonationfrom F(2pπ) to U(VI), the UF6hasactuallysomemultiple-bondcharacter. Theoreticallyup to 1.5. Alsoionicbonding. M. Straka, M. Patzschke, P. Pyykkö, Theor. Chem. Acc 109 (2003) 332. (No.224).
8. MODEL (OR REAL) COMPOUNDS FOR DERIVING COVALENT RADII For a summary of the fouroriginalpapers on new covalentradii, see Pyykkö [1]. Originals: [4] and Pyykkö & Atsumi. Otheroriginalcalculations on ThO [2], PtTh and AuTh+ [3], LnN [4], HThThH [5], LnCH2+ [6]. P. Pyykkö, J. Phys. Chem. A 000 (2015) 000; DOI: 10.1021/jp5065819. (No.313). M. Straka, M. Patzschke, P. Pyykkö, Theor. Chem. Acc 109 (2003) 332 (No.224). M. Barysz, P. Pyykkö, Chem. Phys. Lett. 368 (2003) 538 (No.227). P. Pyykkö, S. Riedel, M. Patzschke, Chem. Eur. J. 11 (2005) 3511. (No.249). Original r3paper. M. Straka, P. Pyykkö, J. Am. Chem. Soc. 127 (2005) 13090.(No.253). B.O. Roos, P.Pyykkö, Chem.Eur.J. 16 (2010) 270. (No289).
9. NUIr AND ISOELECTRONICS Grantedthatplatinumcanbehave as oxygen, or iridium as nitrogen, wouldthisanalogwork with uranyl, OUO 2+ ? A: oneendcanbesubstituted and the groundstate is still singlet [1]. A verystrong and short TM-U triplebond. Subsequently, OUIr+was made [2]. L. Gagliardi, P. Pyykkö, Angew. Chem. Int. Ed. 43 (2004) 1573. (No.239). M. Santos, J. Marçalo, A. Pires de Matos, J. K. Gibson, R. G. Haire, Eur. J. Inorg. Chem. (2006) 3346.
10. U22+ The experimentallyobserved U2wascalculated to have a veryshortbond of 243 pm. The dicationhas an evenshorter U-U bond of 230 pm [1]. L. Gagliardi, P. Pyykkö, B. O. Roos, PCCP 7 (2005) 2415. (No. 252). .
11. LANTHANIDE CONTRACTION IN LnX3 The structures agree with other work. The lanthanide contraction from La to Lu agrees with other work. NR/R about 0.88. The observed ’hybridisation’ of 4f(Lu) and 2p(F) in LuF3 did not agree with later CASPT2 calculations [2]. It was then attributed to self-interaction errors. After SIC, no such hybridisation remained [3]. J-P. Dognon, C. Clavaguéra, P. Pyykkö, Chem. Phys. Lett. 429 (2006) 8. (No. 258). B. O. Roos, R. Lindh, P-Å. Malmqvist, V. Veryazov, P-O. Widmark, A. C. Borin, J. Phys. Chem. A 112 (2008) 11431. R. Ramakrishnan, A.V. Matveev, N. Rösch, Chem. Phys. Lett. 468 (2009) 158.
12. THE 32-ELECTRON PRINCIPLE The first example was a predicted PuPb12 [1]. The second [2] was a predicted dication U@C282+. Note that the neutral is experimentally known. A review on the 32-e principle was written for the Dolg book. (No.312). J-P. Dognon, C. Clavaguéra, P. Pyykkö, Angew. Chem. Int. Ed.46 (2007) 1427. (No. 261). J-P. Dognon, C. Clavaguéra, P. Pyykkö, J. Am. Chem. Soc. 131 (2009) 238. (No.280).
13. THE LnCO SERIES, Ln=La-Lu Bothexperiment and theory [1]. EightLn of the LnCOare new. Both OC→M σdonation and M→CO π* back-donation. The main Lnbondingorbitals the 5d and 6s.. The total spin canhaveboth 4f n , doughnutσ and M-C πcontributions. W-H. Xu(3), X. Jin(1), M-H. Chen(2), P. Pyykkö, M-F. Zhou(4), J. Li(3), Chem. Sci. 3 (2012) 1548. (No304).
The 18-e principle Why are the molecules or complexes with effectively 18 valence electrons around a transition metal atom particularly stable? Examples: Mo(CO)6, Fe(CO)5, Ni(CO)4 [1], Co(CO)3(NO) [2], Fe3(CO)12, OsCl64-, OsCl5(NO)2-, Fe(CN)64- [3]. Proposed explanation: Effectively s2p6d10 el. conf. Sometimes little or no p ! New explanation: Ligand nodal structure suffices [4] ! I. Langmuir, Science 54 (1921) 59-67. E. Reiff, Z. Anorg. Allg. Chem. 202 (1931) 375-381. N. V. Sidgwick, R. W. Bailey, Proc. Roy. Soc. (London) A144 (1934) 521-537. P. Pyykkö, J. Organomet. Chem. 691 (2006) 4336-40.
The kinetic energy for a particle on a sphere E(a.u.) = L ( L+1) / 2R 2. Magic numbers 2, 8, 18, 32, 50, 72, …
Pu@Pb12: The first 32-e species? 1. J. P. Dognon, C. Clavaguéra, P. Pyykkö, Angew. Chem. Int. Ed. 46 (2007) 1427.
Pu@Pb12 • Pb122- is experimentally known as a stiff shell structure. • Could an endohedral actinide atom, like Pu2+ bring in six more electrons and a t2u orbital? A: Yes! • This theoretical proposal is the first 32-electron species. 1. J. P. Dognon, C. Clavaguera, P. Pyykkö, Angew. Chem. Int. Ed. 46 (2007) 1427.
Visual inspection of the MO:s 1. J. P. Dognon, C. Clavaguéra, P. Pyykkö, Angew. Chem. Int. Ed. 46 (2007) 1427.
U@C282+ : An old new 32e system J. P. Dognon, C. Clavaguéra, P. Pyykkö, JACS 131 (2009) 238. K. Zhao, R.S. Pitzer, JPC 100 (1996) 4798. (Earlieranalysis). T. Guo, M.D. Diener, Y. Chai, M.J. Alford, R.E. Haufler, S.M. McClure, T. Ohno, J.H. Weaver, G.E. Scuseria, R.E. Smalley, Science 257 (1992) 1661. (Exp. discovery). 4. Third 32e system: [U@Si20]6-, D-C-P, Chem. Sci. 3 (2012) 2843.
THIRD 32e SERIES: THE PREDICTED [U@Si20]6- For An=U, Cm Ih (left), for An=Np-Am, Th (right) [1]. Chargecompensationbycounterions: La2[U@Si20]. Background: Electroncount of Singh et al.[2]: Si20dodecahedron, 80e. Of these, 60e areeatenby the 30 Si-Siσbonds. 20e left to a πsystem. In Th@Si20, add 4e from the centralmetal. (ag)2 (t1u)6 (hg)10 (t2u)6. We [1]: Filling the previousgu LUMO by 8e has a chance of giving 32e. J-P Dognon, C Clavaguéra, P Pyykkö, Chem. Sci. 3 (2012) 2843. A. K. Singh, V. Kumar, Y. Kawazoe, J. Phys. Chem. B 109 (2005) 15187
La2[U@Si20] The purple box is the 32e system.
A review [5] . A further possible example. [Th(BH4)6]2- . P. Pyykkö, C. Clavaguéra, J.-P. Dognon, ’The 32-electron principle: A new magic number’, in ComputationalMethods in Lanthanide and ActinideChemistry, Ed. M. Dolg, Wiley (to bepublished, No.312). Containsfurtherrefs., notablyfrom T. P. Ghanty’sgroup. S. K. Ritter, C & E News (Sept. 9, 2013) 28-33; G. S. Girolami (priv. comm., Sept. 25, 2013):
Other spherical boxes: Particlein a sphere: 1S < 1P < 1D ≤ 2S < 1F < 2P < 1G .. Sphericalharmonicoscillator: Equidistantlevels 1S < 1P < 2S + 1D < 2P + 1F < 3S+2D+1G < 3P+2F+1H < … Wine-bottlepotential …